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Abstract 
 
 

One main problem of credit models, as in stochastic volatility models for instance, is that the range of arbitrage 
prices of risky bonds and credit derivatives is generally very wide. In this article, we present a model for pricing 
options on the spread in an environment where the rating transition probabilities are uncertain parameters. The 
transition intensities are assumed to lie between two bounds which can be easily interpreted in the light of the rating 
agencies' transition matrices. These bounds are a confidence interval of the rating transition intensities. We show that 
the bounds of arbitrage prices are solutions of a non-linear partial differential equation. In particular, when using 
realistic values for the rating transition (default) probabilities, the arbitrage range of credit derivatives prices remains 
narrow. 
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1. INTRODUCTION 
 
Credit derivatives are derivative securities whose payoff is contingent to the credit quality of a given obligor. This 
credit quality is measured by the credit rating of the obligor or by the spread of his bonds over the yield of a similar 
default free bond. In this article, we focus on credit spread options. 
 
From a theoretical point of view, a benchmark model as Black-Scholes' model for equities, is still lacking for credit 
derivatives. This is an obvious obstacle to the development of credit derivatives markets. Actually, the question is 
rather complex because, as we shall see, credit risk usually introduces incompleteness in the market since changes in 
the credit quality modify the dynamics of the risky assets but cannot be hedged away. 
 
The way to tackle incomplete market problems is three-fold. We can choose a utility based method, as the one 
introduced by Davis ([9]) in order to price credit derivatives, but the main problem is that this method depends on 
the agents' preferences. Another approach is to select a criterion in order to choose one equivalent martingale 
measure out of the infinite set of equivalent martingale measures available ; for instance, Follmer and Sondermann 
([12]) have proposed the criterion of minimization of the quadratic risk in order to select an equivalent martingale 
measure. The last approach is to find the range of prices within the arbitrage bounds for credit derivatives and to 
keep all the equivalent martingale measures in the calculations. This method leads to solve the super-replication 
problem which consists in finding the cheapest portfolio made of the underlying asset and the riskless asset whose 
terminal value is almost surely superior to the payoff of the option. The key point with any of these approaches is the 
duality existing between the hedging problem an the set of equivalent martingale measures.  
 
The last approach is of course the most satisfactory because it is not based on a choice of a utility function or risk 
measure ; however, it generally gives a trivial range for derivatives prices ([7,10,20]). For instance, in the case of credit 
risk models, the range of prices of a risky bond is simply determined by all the possible dates of occurrence of the 
default : the lower bound is the price of the bond if ever the default is going to occur immediately, and the other 
bound is the price for a riskless bond (see [7]). Thus, as in usual option models in incomplete markets, the problem 
of super-replication for credit derivatives often leads to trivial arbitrage prices. 
 
Here, we propose a new methodology in order to get non trivial arbitrage bounds on credit derivatives prices. The 
market is made of one riskless asset and one risky bond. As in Black-Scholes' or Vasicek's model ([4,22]), we specify 
a continuous time dynamics for the underlying asset (here it is the spread or, equivalently, the price of the risky 
bond), and we consider a European option written on this asset. We also assume that the rating of the issuer can 
change, and the probabilities of such changes are given by the rating transition matrices. In our model we assume 
that the spread of the risky bond follows an Ornstein-Uhlenbeck process with rating-dependent coefficients. The 
incompleteness of the model comes from the rating transitions that cannot be hedged away by trading on the only 
asset available in the market. The main idea of our model is to deal with a subset of the equivalent martingale 
measures only, as compared to bounded stochastic volatility models where we assume that the volatility lies between 
two extreme values. The bounded uncertain parameters are the intensities of rating transitions. The rating agencies 
give some statistics about the rating transition probabilities but for a given firm, the transition probabilities remain 
unknown. Indeed, the rating agencies make their statistics on very large samples of firms and do not catch the 
specific risk of each firm. Our methodology permits to deal with the specific risk of the firm through uncertain 
transition probabilities. As we shall see, this leads to consider the super-replication price of spread derivatives which 
are solutions of a non linear Partial Differential Equation (PDE) that gives non trivial arbitrage ranges for credit 
derivatives prices. 
 
This article is organized as follows : in the second section, we make a short empirical study of the dynamics of the 
spreads according to the maturity of the contracts and to the rating of the issuer. In section 3 we describe the 
generating matrix formalism in order to model the rating transitions. Then, in section 4, we present the continuous 
time model and derive the non linear PDE that gives the arbitrage range of derivatives on the spread is described in 
section 5. These equations are solved numerically in section 6 in a simple three rating levels model. Section 7 
concludes. 
 
 
 
2. SPREAD DYNAMICS 
 
From an econometric point of view, the process of the logarithm of the spread is often modeled by an Ornstein-
Uhlenbeck process ([19]). However, this implies a positive value for the spreads. This is not always the case, for 
instance when we only consider the spread between high quality corporate rates and swap rates. In this article, we 
consider spreads over swap rates ; this sometimes leads to negative values for the spread. Thus we are going to 
assume that the spreads time series follow an autoregressive AR(1) process of the form :  
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This discrete dynamics involves three parameters : the parameter  is interpreted as the mean reverting speed, 

 is the long term equilibrium value of the spread and  is a volatility parameter of the spread. The 
variables R and T are the rating of the issuer and the maturity of the debt we are considering (we only consider here 
long term debts and credit qualities). The random variable 
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tε  is a gaussian white noise. Let us note that there is a 
term structure of the spreads and that the non arbitrage conditions would imply relations between these parameters 
in a continuous time model. Here, we only consider equation (1) from an econometric point of view. 
 
In order to estimate these three parameters for each value of the rating and maturity, we have selected indexes of US 
industrial bonds built by Bloomberg. Each index corresponds to a given rating and Bloomberg has reconstructed a 
yield curve for each sector and rating. The data are daily index yields from 02/28/98 to 12/01/99; the spreads we 
have calculated are the difference between these yields and the corresponding US swap rates of the same maturity. 
Our results are reproduced in Table 1. They provide the maximum likelihood estimations of the parameters , 

 and , and the 90 % confidence intervals of these estimates. 
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Mean (bp) 2Y 5Y 10Y 20Y 30Y Confidence 2Y 5Y 10Y 20Y 30Y
AAA -5,14 -8,66 -15,25 10,63 13,17 AAA 38,80 33,37 32,14 66,72 86,47
AA -0,38 -5,12 -9,12 16,62 20,41 AA 39,39 35,45 41,95 66,44 106,13
AA- 4,97 2,23 -2,55 24,71 30,46 AA- 51,97 56,99 43,38 63,75 56,28
A+ 12,36 12,62 6,95 36,79 42,04 A+ 86,66 93,64 55,56 81,12 88,78
A- 31,97 37,19 36,62 62,48 68,64 A- 214,08 169,37 88,96 189,98 295,73
BBB+ 42,89 53,33 52,53 76,54 86,75 BBB+ 286,89 273,72 177,30 238,13 382,88
BBB 54,56 63,37 64,55 93,81 100,23 BBB 339,38 276,79 238,93 376,96 532,22
BBB- 73,36 89,26 90,10 115,22 122,71 BBB- 561,95 496,76 296,40 528,94 690,69

Speed 2Y 5Y 10Y 20Y 30Y Confidence 2Y 5Y 10Y 20Y 30Y
AAA 0,16 0,18 0,20 0,08 0,06 AAA 0,90 0,96 0,98 0,66 0,56
AA 0,15 0,17 0,15 0,08 0,04 AA 0,87 0,93 0,87 0,65 0,49
AA- 0,12 0,11 0,14 0,09 0,08 AA- 0,80 0,75 0,87 0,67 0,67
A+ 0,07 0,07 0,11 0,06 0,05 A+ 0,61 0,60 0,78 0,59 0,52
A- 0,03 0,04 0,07 0,03 0,02 A- 0,42 0,46 0,63 0,38 0,30
BBB+ 0,02 0,02 0,04 0,02 0,01 BBB+ 0,35 0,37 0,46 0,35 0,27
BBB 0,02 0,02 0,03 0,02 0,01 BBB 0,33 0,37 0,41 0,28 0,23
BBB- 0,01 0,01 0,02 0,01 0,01 BBB- 0,26 0,28 0,36 0,24 0,21

Volatility (bp) 2Y 5Y 10Y 20Y 30Y Confidence 2Y 5Y 10Y 20Y 30Y
AAA 0,0367 0,0365 0,0379 0,0326 0,0289 AAA 0,0306 0,0304 0,0315 0,0272 0,0240
AA 0,0348 0,0364 0,0371 0,0314 0,0273 AA 0,0289 0,0303 0,0308 0,0261 0,0227
AA- 0,0381 0,0362 0,0366 0,0328 0,0279 AA- 0,0317 0,0302 0,0305 0,0273 0,0232
A+ 0,0363 0,0374 0,0370 0,0313 0,0258 A+ 0,0302 0,0312 0,0308 0,0261 0,0215
A- 0,0412 0,0403 0,0389 0,0312 0,0282 A- 0,0344 0,0336 0,0324 0,0259 0,0235
BBB+ 0,0394 0,0399 0,0395 0,0339 0,0325 BBB+ 0,0329 0,0333 0,0329 0,0281 0,0271
BBB 0,0408 0,0405 0,0428 0,0342 0,0323 BBB 0,0338 0,0337 0,0357 0,0283 0,0269
BBB- 0,0382 0,0410 0,0423 0,0352 0,0340 BBB- 0,0317 0,0341 0,0351 0,0293 0,0283

 
Table 1 : Mean value, mean reverting speed and volatility parameters of credit spreads (left), and the corresponding 

90% confidence interval (right).  
 
 
 
These results provide interesting insights about the dynamics of credit spreads. First, the dynamics of credit spreads 
is mean reverting because of the positivity of the mean reverting speed of the process : for any value of the rating 
and of the maturity, the coefficient  is positive (see Table 1, 3),( TRa rd and 4th tables). Moreover, as shown in 
Longstaff and Schwartz ([19]), the mean reverting speed of credit spreads decreases for lower-rated debts and also 
decreases with maturity. 
 
The mean of the credit spreads is also a parameter of interest. In Table 1, we show that  is clearly increasing 
with the rating. This behavior is of course intuitively correct : for a lower rated debt, we expect a higher return. 
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Another conclusion of our empirical study is that credit spread volatility parameters increase as the debt quality 
decreases (see Table 1, 5th and 6th tables). Here again, our results are in agreement with the results obtained by 
Longstaff and Schwartz in [19]. Table 1 (5th and 6th tables) details the volatility parameter of the spread as a function 
of the rating and the maturity. 
 
As we can see directly in the time series themselves, the spread process has jumps, and the spread variations are not 
normally distributed. The confidence intervals for the parameters confirm this affirmation : in Table 1, we have 
computed the width of the 90 % confidence intervals for each parameter. We observe that for the mean reverting 



parameter and for the long term mean value of the spread, the width of the confidence intervals are much larger than 
the parameters themselves. For the volatility parameter, the estimation is much better. 
 
This analysis clearly shows that the spread process is far from a AR(1) process, even if the estimated parameters look 
friendly. However, in our continuous time model of section 4, we shall choose an Ornstein-Ulhenbeck process for 
the spread dynamics in order to get a tractable model. Before, this let us introduce the transition matrices formalism 
that models the rating changes. 
 
 
 
3. TRANSITION MATRICES 
 
In order to mathematically construct a coherent model for rating transitions, we consider the Markov chains 
formalism ([15,18]). The rating process is a jump process that takes its values in a finite set of integers. We assume 
that we have D levels of rating for the risky issuer, from 1=AAA to D=default and assume that the transition 
probability from level i to level j is proportional to the time interval :  
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Rating agencies like Standard and Poors or Moody's give a one year matrix transition. Standard & Poor's ([20]) one 
year rating transition matrix (april 1996) is given in Table 2. 
 
 

AAA AA A BBB BB B CCC D
AAA 90,81 8,33 0,68 0,06 0,12 0 0 0
AA 0,70 90,65 7,79 0,64 0,06 0,14 0,02 0
A 0,09 2,27 91,05 5,52 0,74 0,26 0,01 0,06
BBB 0,02 0,33 5,95 86,93 5,30 1,17 0,12 0,18
BB 0,03 0,14 0,67 7,73 80,53 8,84 1,00 1,06
B 0 0,11 0,24 0,43 6,48 83,46 4,07 5,20
CCC 0,22 0 0,22 1,30 2,38 11,24 64,86 19,79
D 0 0 0 0 0 0 0 100

Rating transition probability after one year (%)Initial rating

Table 2 : One year rating transition probabilities (source : Moody’s). 
 
 
Of course, the transition matrix over a given period depends on the period length. If we assume a stationary property 
of the transition matrices (i.e. a matrix transition over a period does not depend on the date at which we consider the 
transition matrix), then we can easily build a transition matrix over any period from the one year matrices given by 
the rating institutes. Let us call  the transition matrix between t and )( tP Δ tt Δ+ . We develop this matrix around the 
identity matrix up to first order in  :  tΔ
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where I is the  identity matrix. Then, the transition matrix between time t and time t+s writes :  DD×
 

AsesP .)( =                                                                             (4) 
 
 

AAA AA A BBB BB B CCC D
AAA -9,68 9,18 0,35 0,02 0,14 0 0 0
AA 0,77 -9,96 8,57 0,45 0,01 0,14 0,02 0
A 0,09 2,49 -9,69 6,18 0,66 0,22 0,00 0,05
BBB 0,02 0,28 6,67 -14,50 6,29 1,03 0,09 0,12
BB 0,03 0,13 0,45 9,24 -22,40 10,70 1,07 0,77
B 0 0,12 0,24 0,10 7,86 -18,88 5,49 5,07
CCC 0,29 0 0,20 1,57 2,62 15,14 -43,77 24,00
D 0 0 0 0 0 0 0 0

Rating transition generating matrix (%)Initial rating

 
Table 3 : Generating matrix. 

 



 
Matrix A is called the generating matrix whose properties are described in [1,14]. It is of course possible to compute 
the generating matrix from the matrix provided by the rating agencies just by taking the logarithm of the transition 
matrix in a diagonal basis and by coming back in the original basis (the generating matrix is a stochastic matrix with a 
dominant diagonal, and thus is diagonalizable). The main property of the generating matrix is that the sum of the 
coefficients of a row of the matrix is equal to 0, and the only negative coefficients are the diagonal coefficients. 
 
The main objection to this kind of model is that historical data are not consistent with the Markov property of the 
transition matrices autocorrelations of transitions and defaults. Let us take an example. In the above framework, the 
transition matrix corresponding to a ten-years maturity is equal to the one year transition matrix to the power ten. 
We have computed from Moody's data the default probability over a ten years period thanks to the one year 
transition matrix, and we have compared the results with the historical ten years default probabilities. Table 4 
summarizes the results : 
 
 

1 Yr 10 Yrs (matrix) 10 Yrs (historical)
Aaa 0 0,3% 0,7%
Aa 0 1,1% 0,9%
A 0 4,0% 2,0%
Baa 0,2% 11,3% 5,0%
Ba 1,8% 34,3% 19,5%
B 8,3% 65,3% 40,0%

 
Table 4 : Ten years default probabilities obtained from the one year transition matrix and from historical data  

(source : Moody's). 
 
 
As we can see, the transition matrices formalism overestimates the ten years default probabilities. However, in what 
follows, we are going to remain in the framework of the transition matrix formalism as explained above. 
 
 
 
4. A CONTINUOUS TIME MODEL 
 
4.1 A rating driven spread dynamics 
 
For the sake of clarity, we assume that the term structure of interest rates is flat and equal to r over time. This 
assumption can be relaxed by specifying for instance a Vasicek like dynamics for the instantaneous rate, or a more 
complex model for the whole rate curve (HJM model for instance). Such a change would not change the generality 
of our purpose. The choice of the interest rate model is out of the scope of this paper which focuses only on the 
credit part. 
 
The market is assumed to be made of two kinds of assets : a risk free asset with a constant rate of return r, and a 
risky zero-coupon bond with maturity T issued by a firm with rating  at time t. The price fluctuations of this bond 
are driven by two sources. First, there are market fluctuations : because risk free rate is constant, they are interpreted 
as spread fluctuations. Second, credit events, such as a default, can induce price variations of the risky bond. 

tR

 
We propose here a one factor model in order to take into account the market risk. This factor is the spread 
corresponding to maturity T. Our model is similar to Black's model ([3]) for interest rates since we do not build an 
arbitrage model for the whole term structure of the spreads. There are two main motivations for doing this : first, the 
model we obtain is much more simple to tackle (this is one of the reasons for the success of Black's model) ; second 
most of the firms have a few issues which are not sufficient to build a realistic model for the spread curve. The 
spread process  satisfies the following Stochastic Differential Equation (SDE) :  ( ) 0≥ttX
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where  is a standard brownian motion and ( ) 0≥ttW ( ) 0≥ttR  is the rating process of the issuer. We assume that there 
are D levels of rating ; the dynamics given in equation (5) is valid as long as the issuer has not defaulted ( )DRt <  



and the coefficients of the dynamics are rating dependent. The price B(t,T) at time t of the risky zero-coupon bond 
with maturity T writes :  
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Itô's lemma leads to the dynamics of the risky bond, and there is a unique probability change that makes the 
discounted price process of the bond a martingale (see appendix). Before the time of default, the spread dynamics is 
a mean reverting stochastic dynamics with parameters depending only on the rating level of the debt and is solution 
of equation (5). After the default, the rating process is assumed to remain constant because, as we can see in figure 4, 
the probability of coming back to a non defaulted situation is equal to zero. We assume that after the default, the 
risky bond turns into a riskless bond with the same maturity T but a decreased nominal to 1<ω  (which is the 
recovery rate of the risky debt). Let us call  the price of the riskless zero-coupon bond with maturity T. 
After the default, we deduce a theoretical value for the spread s(t) at time t :  
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We assume that the observed spread after the default is no longer stochastic and reaches its equilibrium value s(t) 
immediately after the default. 
 
 
4.2 A dynamics for the rating 
 
The specificity of this model is that it takes into account the possibility of rating transitions. It is easy to make a 
model for the rating process since we assume that it is a pure jump process with a finite number of possible values, 
and the intensities of the jumps are the coefficients of the generating matrix. The rating process ( )  is solution 
of the SDE  :  
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with initial value . The processes { DR ,...,10 ∈ } ( ) 0,..1 ≥= tDi

i
tN  are independent Poisson point processes with intensities 

equal to  which are the coefficients of the generating matrix that describes the rating transition 

probabilities of the firm. Each Poisson point process 

( ) iRt t
aRi ,, =λ

( ) 0≥t
i
tN  represents the transition between the rating level  

(the ongoing rating level at time t) to the rating level i. Between time t and time t+dt, the probability of this rating 
transition is equal to the coefficient (  of the generating matrix times the time interval dt. The amplitude of the 

rating jump when the i-th Poisson's process  jumps is 

tR

)iRt ,

( ) 0≥t
i
tN ( )tRi − . 

 
This model is interesting from an empirical point of view. Indeed, we deal with a jump model, but there are no 
estimations of the amplitudes of the jumps since they are integer numbers. Moreover, we have an estimation of the 
intensities of the Poisson processes thanks to the rating agencies' matrices, but these estimations do not integrate 
specific risk. That is why we assume that the intensities are uncertain parameters of the model, which means, from a 
mathematical point of view, that the equivalent martingale measure is no longer unique since the intensity of the 
Poisson process is not unique. This point is developed further in section 5. 
 
 
4.3 Arbitrage range of option prices 
 
In this subsection, we address the main goal of this article. We aim at computing the arbitrage range of prices of a 
contingent claim written on the spread. To this end, we compute the super-replication (resp. under-replication) price 
of options on the spread. The option is written on the spread itself or equivalently on the risky bond. Let us consider 
the European option with maturity H<T and pay-off g(B(H,T)). For instance the most common option on spread is 
the option to buy the risky bond at time H at a given spread ; this option is exactly a call option on the risky bond. 
We call tπ  the proportion of a hedging portfolio invested into the risky bond at time t, and we consider any 
admissible strategies ( ) 0≥ttπ  ; we do not describe them in detail (see for instance [5]) but we just say that they are 



self-financing and that they satisfy some integrability conditions. An admissible hedging portfolio is then obtained 
from an admissible hedging strategy. The problem of super-replication is to find the cheapest portfolio over-hedging 
the contingent claim. At time t, the value of this portfolio is :  
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where  is the value at time H of the hedging portfolio knowing that it was x at time t and we have followed 
strategy 

π,,tx
HV
π . In its dual form (see Kramkov [17]), this optimization problem writes as the supremum over all 

equivalent martingale measures of the expected pay-off of the claim and the value of the portfolio is a function of t, 
B, and R :  
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Here, the supremum is taken over all the equivalent martingale measures ; in the next section, we are going to 
parametrize this set of measures and we shall explain which measures should be kept in the analysis. In particular, we 
will argue that, from a financial point of view, all equivalent martingale measures are not relevant. 
 
 
 
5. THE RISK NEUTRAL DEFAULT PROBABILITIES 
 
 
5.1 The set of uncertain transition intensities 
 
The market is incomplete because the rating is not a negotiable asset. As shown in the appendix, the set of 
martingale measures can be parametrized by D positive real numbers ( ) Sp Di

i ∈= ..1 , where the control set S is a 

subset of . These numbers are risk premiums associated to the D possible changes of rating. If we consider all 

the equivalent martingale measures, the set S is isomorphic to . The function V(t,B,R) is solution of the 
following non linear equation (see appendix and [16]) :  
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where . Changing the probability measure is equivalent to changing the intensities of 

each Poisson process by a factor . This kind of transformation on the generating matrix leads to another 

generating matrix for any positive value of the parameters 

),,(),,(, RBtViBtVVRi −=Δ
ip

( ) Di
ip ..1= . A one year risk neutral transition matrix can 

then be computed. Let us illustrate this by choosing one particular risk neutral measure characterized by a set of 
parameters . We construct the diagonal matrix ( ) Di

ip ..1= ( )DppdiagM ,..,1= . The matrix M.A is still a generating 
matrix, and the risk neutral transition matrix between time t and time t+s is :  
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From a theoretical point of view, the  are arbitrary strictly positive real numbers. Nevertheless, the question 
we address here, is to know whether they are all relevant from a financial point of view. Keeping all the equivalent 
martingale measures leads for instance to consider the case where the firm will default in the next minute with 
probability arbitrarily close to 1 (this corresponds to the limit ). This scenario has a very important impact 
on the pricing procedure and affects deeply the numerical results : it is in particular responsible for the large ranges 
of arbitrage prices in credit models. In practice, it is not reasonable to hedge the risk that a AAA rated firm defaults 
in the next minute, more especially as the one year historical probability of default of a AAA rated firm is very close 
to zero : people are excessively prudent when they compute arbitrage prices. We argue that such a risk does not need 
to be hedged away in a realistic model of credit derivatives pricing (mathematically speaking, this means that the 
parameter  must not be sent to infinity).  

( ) Di
ip ..1=

∞→Dp

Dp
 



Moreover, we expect that the risk neutral intensities are around the value obtained from the S&P matrix, the 
difference being equal to the specific part of credit risk. This is why we propose to bound upward the rating 
transition intensities instead of considering any positive real values. More precisely, our methodology is inspired from 
Avellaneda's model ([2], see also Wilmott in [23]) of uncertain volatility : we assume that the risk neutral rating 
transition intensities are not uniquely defined, but they are uncertain parameters because of the specific risk. The set 
of uncertain parameters is interpreted as a confidence interval on the transition intensities. This is equivalent to 
assume that the risk premiums are themselves uncertain parameters, belonging to the interval :  
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where the ( ) Di

ip ..1=  are entries of our model. The partial differential equation (11) thus writes, for R<D :   
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This equation actually splits into D-1 coupled equations because we have to solve the partial differential equations 
simultaneously for each value of the rating. In the next section, we will show this explicitly on a three rating levels 
model. Such non linear PDE has been first introduced in finance by Hoggard et al. ([13]).  
 
 
5.2 Intuitive meaning of the measure bounds 
 
The parameters ( ) Di

ip ..1= constrain the set of uncertain probabilities and then characterize the confidence interval ; 

these parameters have a very intuitive meaning in the special case pp i =  (for all { }Di ..1∈ ). We remind that the 
number p  is a risk premium parameter for the intensities ),( Riλ . Let us write the one-year risk neutral transition 
probabilities :  
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The one year risk neutral transition matrices are simply the k-years S&P transition matrices with ] pk ,0∈ ] . The 
standard and Poor's matrix is a kind of benchmark for the rating transition probabilities ;  in our model we keep any 
generating matrix equal to a k-years S&P's generating matrix. The parameter p  tells how prudent we are when we 
hedge credit risk in the pricing procedure relative to using S&P's generating matrices since it represents the 
maximum transition risk premium that we consider for the risky bond relative to the S&P's transition intensities. 
This remarkable property gives the model an intuitive understanding and a concrete criterion in order to choose the 
bounds on the risk neutral intensities we want to keep. For instance, choosing 500=p  means that the uncertain 
default probabilities are between the instantaneous default probabilities and the 500-years default probabilities : from 
the viewpoint of credit risk, we forget events that occur less than once in 500 years. 
 
As it is implicitly written in eq. (14), the optimal parameters that give the upper bound are either 0 or p , depending 
on the sign of . When , the optimal parameter is VRi,Δ 0, >Δ VRi p , and it is equal to 0 in the opposite case. 
Moreover, the optimal parameter varies on the grid in the case when the pay-off is convex at some points and 
concave at others: in this case, the price of the option depends on the rating, and the sign of  is likely to 
change. This is similar to what happens in Avellaneda’s uncertain volatility model for spread options for instance 
which selects the optimal path of optimal volatility according to the sign of the gamma. 

VRi,Δ

 
The analysis of optimal probabilities is much easier in the case of convex, concave or linear pay-offs. This later case 
correspond to the pricing of risky bonds and has been extensively studied by Collin-Dufresne and Hugonnier in [7]. 
They show that the upper price (resp. under price) corresponds to an optimal parameter equal to 0 (resp. infinity, 
corresponding to a default probability equal to 1). The interpretation for a linear pay-off is that, in the best case 
scenario, the probability of downgrade is 0, and the probability of upgrade is maximal. On the reverse case, the worst 
case scenario corresponds to a probability of downgrade (and thus of default) equal to 100%. In the framework we 
have chosen here, the upper parameter is capped to p , but the same analysis remains available. 
 
 



6. THREE LEVELS MODEL 
 
In this section, we limit ourselves to a simple example of a three rating levels model. These levels are R1, R2 and D 
for default. For instance R1 stands for the investment grade rating level and R2 stands for the speculative grade. The 
historical generating matrix for the transition probabilities is the one given Table 5. 
 
 

R1 R2 D
R1 -0,3 0,2 0,1
R2 0,3 -2,33 2,02
D 0 0 0

R1 R2 D
R1 99,7 0,2 0,1
R2 0,3 97,7 2
D 0 0 100

Initial rating

Initial rating

Generating matrix (%)

Transition matrix (%)

 
Table 5 : Generating matrix and one year transition matrix in the three-level model. 

 
 
In order to write down the full system of partial differential equations we need the value of the derivative after the 
default. This goal is easily achieved since the price of the risky bond after the default is at time t : 
 

)(),( tTreTtB −−= ω                                                                               (16) 
  
After the default, the value of the derivative at time t is deterministic and is the discounted final payoff :  
 

( ))()(),,( tTrtTrD egeDBtVV −−−−== ω                                                              (17) 
 
From equation (14), the super-replication prices of the credit option for rating levels R1 and R2 are solution of the 
following system of coupled PDE :  
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where . This system of PDE is known to have a unique solution since it is a cooperative system 
([6]). It also possesses important properties of numerical convergence. The lower bound of arbitrage prices is the 
solution of similar equations :  
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where . We have computed the numerical solution for the call option on the spread : this option 
gives the right to buy the risky bond at a given spread (the strike of the option) at the maturity. In figure 1, we give 
the curves of the range of prices for this option with strike 0 basis points and maturity 3 months ; the rating of the 
issuer at time 0 is R1. We have chosen the confidence interval for the uncertain parameters : 

)0,min()( AA =−

500=p . 
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Figure 1 : Arbitrage range of prices for a call option on the spread of a risky bond with strike 0 bp and maturity 3 

months. 
 
 
As we can see, the arbitrage range of prices is quite narrow in this model in spite of a very large value of the 
parameter p . The curves cross the payoff function contrary to Black-Scholes' model : the possibility of a credit 
event makes the in-the-money prices of the European call options lower than the pay-off itself. 
 
Let us now turn to the call spread option on the spread of the risky bond. This option is actually a call spread option 
on the risky bond itself. This option gives the right to buy the risky bond at a spread equal to 

. In the language of risky bonds, this is exactly a call spread on the risky bond. For 
numerical applications, we consider the call spread option with strike 1 equal to 0, strike 2 equal to 25 bp and 
maturity 3 months ; the confidence interval of the transition intensities is still defined by 

( 2)(,1max strikeHXstrike − )

500=p . 
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Figure 2 : Arbitrage range of prices for a call spread option on the spread with strikes 0 basis points and 25 basis 
points respectively, and maturity 3 months. 

 
 
 
 
 
 



7. CONCLUSION 
 
We have described a simple model for the evolution of credit spreads based on credit ratings transitions. This model 
is appropriate for pricing European options on spread. The main interest of this article is not in the spread model 
itself, but rather lies in the choice of the risk-neutral probabilities which are mapped on the set of the uncertain 
transition intensities. We assume that the default probabilities do not explain the whole spread, and on the reverse, 
the spread is not enough to choose the risk neutral transition probabilities. 
 
Our model is an uncertain probability model and leads to a range of arbitrage prices for credit derivatives since we 
give a confidence interval for the choice of the uncertain intensities. We have then computed numerically this range 
of prices and we have shown that it was quite narrow for short term options.  
 
This uncertain probability model is similar to Avellaneda's uncertain volatility model ([2]) but leads to a system of 
non linear partial differential equations for the extreme bounds of the arbitrage prices. However, the interpretation 
of the probability interval is quite similar : we interpret it as a confidence interval for the specific rating transition 
probabilities.  
 
 
 
 
 
APPENDIX : DERIVATION OF THE NON LINEAR PDE 
 
For the sake of clarity, we only provide the reader with a sketch of a derivation of the non linear partial differential 
equation (14). For a mathematically precise proof of these results, we refer to [5] and [8]. The super-replication price 
of the contingent claim with payoff g(B(H,T)) and maturity H<T, is :  
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Changing the probability measure leads to introduce a risk premium for the brownian part (i.e. a process ( ) 0≥ttθ  and 
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Under an equivalent measure, the discounted risky bond price is a martingale. The risk premium ( ) 0≥ttθ linked to the 
brownian motion is then: 
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The risk premiums  associated to the jump processes are chosen to be markovian in order to go on with a 
markovian model. In general, we make this assumption in order to use Bellman's principle. We assume that the 
nature of the results remains unchanged whereas the calculations are simplified (see for instance [8]). The processes 
of the price of the risky bond (before default) and rating write :  
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The processes  are free parameters of our model, and they parameterize the set of equivalent martingale 

measures ; we denote the equivalent martingale measures as . Thanks to the markovian nature of all the 

( )i
tp

DppQ ..&



processes under the equivalent martingale measures, we can apply Bellman's principle between time t and t+h, which 
leads to the equation :  
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where DV(t,B,R) is the Dynkin operator applied to the function V(t,B,R). In the limit , the integral converges 
to the value of the integrand at time t, and the supremum over all the processes 

0→h
( )i

tp  is transformed into a 

supremum over real parameters (value of the processes at time t). Lets us call S the Euclidean sub-space of  in 
which the D-varied process 

Dℜ
( ) 0

1 ,.., ≥t
D
tt pp  takes its values. The Dynkin of the function V(t,B,R) is obtained thanks to 

Itô's lemma extended to the case of jumping processes. Applying Itô's lemma to the function V(t,B,R) leads :  
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where . Inserting this result into eq. (A5), we obtain the partial differential equation 
satisfied by the super-replication price V(t,B,R) :  
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This is equation (11). At this stage, the control set S is not yet specified. In the article, we did not take the whole set 
of equivalent martingale measures, and we have bounded the control set S to the rectangle ] ] ] ]Dpp ,0,0 1 ×⋅⋅× .  
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