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Cutting edge: Operational risk

Operational risk modelled analytically
Regulators require banks to use an internal model to compute a capital charge for operational risk, which is thought to be
sensitive to assumptions on dependence between losses that still remain a matter of debate. Vivien Brunel proposes an
analytical way to quantify this risk, and shows that uniform correlation is a robust assumption for measuring capital charges

T
he current regulatory framework allows banks to compute their
capital charge for operational risk under an internal model,
which is often based on the loss distribution approach (LDA).

Loss distributions are calibrated at the cell level (a cell is the elementary
risk unit per business line and type of risk) and the bank’s capital
charge is estimated by aggregating cell loss distributions under some
dependence assumption (Chernobai, Rachev & Fabozzi 2007).

The Basel Committee provides some guidelines about how banks
should appropriately reflect the risk profile in their internal model
(Bank for International Settlements 2011). However, banks benefit
from some flexibility in their modelling choices and this may lead
to some discrepancies in capital charges for similar risk profiles. The
broad range of practices that are observed among banks is the result
of different distributional or dependence assumptions in their models.

Many studies have focused on the modelling of the tails of the sever-
ity distributions (Dutta & Perry 2007; Moscadelli 2004), but the bulk
of the correlation problem is still unsolved and controversial. There is
much debate about the choice of copula function for losses across cells
due to the scarcity of data, but the regulators advise banks to deter-
mine sound correlations and to retain conservative assumptions. Some
institutions have selected the simplest option and use equal correla-
tions between cell losses. This assumption is questionable, of course,
and may embed some model risk, but both regulators and practitioners
have great difficulty in agreeing on realistic and conservative correla-
tion levels. Some authors believe that correlations between cell losses
are as low as 4% (Frachot, Roncalli & Salomon 2004).

Most of the knowledge we have about operational risk quantification
comes from complex models and heavy Monte Carlo simulations, and
as far as we know there is no analytical model that takes into account
risk and correlation dispersion among cells. This article fills this gap.
Under the asymptotic single risk factor assumption, we obtain new
results for the bank’s capital charge sensitivity to the critical parameters
of the model. In particular, we show the capital charge is not that
sensitive to correlation dispersion, and that the constant correlation
assumption is robust.

This new result is obtained with few specifications, and we conjec-
ture that it remains valid, at least qualitatively, for real bank portfolios
that have a finite number of cells. We believe that our approach also
provides a way to pioneer a new method for computing capital charges
and challenging internal model assumptions, as exemplified in this
paper.

This paper is organised as follows. First, we provide some real data
evidence about cell loss distributions and correlations. Second, we
solve the asymptotic single risk factor model with lognormal losses
at the cell level, even when individual cells have varying risk profiles.
Third, we solve the case of non-equal correlations between cells and
provide some key results about the sensitivity of capital charge to the
main critical parameters of the model.

Some empirical facts about cell loss distributions and
correlations
In the LDA framework, the aggregate operational loss for cell number
i is equal to the sum of individual losses:

Li D

NiX
nD1

X in (1)

where Li is the aggregate loss of cell number i , Ni is the number of
events over one year, and .X in/16n6M is the sequence of individual
loss severities for cell number i . The aggregate loss process is a com-
pound Poisson process and, accordingly, the model is based on the
following assumptions.
� The number of events and their severity are independent.
� Severities are independent and identically distributed random
variables.

� Cell loss distribution parameters. There are many studies in the
literature about individual loss distributions (see, for example, Dutta &
Perry 2004; Moscadelli 2004), but there are very few empirical studies
about aggregate cell losses.

We have conducted such a study based on the SAS OpRisk Global
Data database. As of November 2013, this database included 6,402
events that had occurred in financial firms since 2002, when financial
institutions started to collect and report their operational losses sys-
tematically. We have calibrated the frequency of events and lognormal
severity distributions for each of the 21 cells that have more than 30
losses. Direct calibration of the aggregate loss distribution from real
data is, of course, impossible because there is only one observation per
year. However, it is possible to assess the fit with the lognormal distri-
bution of the aggregate loss distribution obtained through the LDA.

Let us assume that the loss distribution for cell i is lognormal with
parameters �i and �i ; the ratio between the expected value and any
quantile depends only on the parameter �i :

expected value .i/

VaRq.i/
D e�

2
i
=2C�iFq (2)

�i D �Fq �

s
F 2q C 2 ln

expected value .i/

VaRq.i/
(3)

whereVaRq is the q-percentile of the lognormal distribution andFq D
N�1.1 � q/. Inverting (2) leads to two different solutions, and we
have chosen the one with a minus sign in front of the square root in
(3) because we require the parameters �i to decrease with the ratio
of expected value to quantile for all cells. We observe that broader
distribution assumptions for cell losses in the model can naturally be
taken into account by choosing the plus sign solution in (3).
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Cutting edge: Operational risk

A. Implied value of � from real data

Confidence Average Standard
level (%) (%) deviation (%)

95 98 41
97.5 99 39
99 107 44
99.5 112 46
99.9 124 48
All 107 42

The LDA gives us these ratios for each cell in the tail of the loss
distribution (q > 95%). Table A provides the observed average value
and the standard deviation of the parameters �i (implied from (3)) over
all cells for several values of the confidence level.

The values of �i remain somewhat stable when the confidence level
changes: the average value over all cells and confidence intervals is
equal to 107%, and the observed standard deviation is equal to 42%.
To assess the robustness of these estimates, we compute the median of
the observed values of �i , which at 108.5% is very close to the average
value. The med-med estimator (the median value of the spread with the
median) is equal to 31%, which is lower than the measured standard
deviation.

� Cell loss correlations. In most studies (see, for example, Aue &
Kalkbrener 2007; Frachot, Roncalli & Salomon 2004) cell loss corre-
lations are calculated from the dependence of the number of events
between cells rather than the dependence of severities. Under the
assumption of lognormal severity distributions (X i � LN.mi ; si /),
Frachot, Roncalli & Salomon show that the loss correlation between
cell 1 and cell 2 is given by:

corr.L1; L2/ D corr.N1; N2/e
�s21=2�s

2
2=2 (4)

The correlation between the number of events,N1 andN2, is linked to
the loss frequencies of cells 1 and 2. s1 and s2 are the standard deviation
parameters of the two distributions. Bivariate Poisson variables are
obtained by considering three independent Poisson variables Z, Y1
andY2 with parameters r ,�1�r and�2�r , respectively; the variables
Ni D ZCYi are also Poisson with intensities �i , and their correlation
is given by:

corr.N1; N2/ D
r

p
�1�2

6 R D

s
min.�1; �2/

max.�1; �2/
(5)

The upper bound R for the correlation comes from the inequalities
�1 > r and �2 > r . Whenever the bank’s portfolio includes a large
number of cells, the intensities are distributed as a random variable.
Internal data represents frequencies better than external data because
it is specific to the bank, and it also includes the frequencies of rare
but severe events that are taken into account by the scenario analy-
ses in the model. Internal data and scenario analysis frequencies at
Société Générale support the normal distribution assumption of the
log-intensities of the Poisson processes (in particular, the skewness
and normalised kurtosis are close to 0) with a standard deviation equal
to � D 2:35˙ 0:35. Setting ln �i D ˛ C �Gi , where the .Gi /iD1;2

1 Density of probability of the upper boundR for loss correlations
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are uncorrelated standard normal random variables, we obtain:

R D e��jG1�G2j=2 D e��jXj=
p
2

whereX is a standard normal random variable. Under this assumption,
the upper bound R follows a truncated lognormal law:

P ŒR 6 �� D P
�
jX j > �

p
2

ln �

�

�
D 2N

�
p
2

ln �

�

�
(6)

We plot the density function of the correlation upper bound of R cor-
responding to � D 2:35 in figure 1.

The expected value ofR is equal to2e�
2=4N.��=

p
2/, which works

out to be 38.5% for � D 2:35. This is in line with the findings of Aue
& Kalkbrener (2007), who observed that frequency correlations were
around 10%, with higher correlations being specific only to some pairs
of cells. Frachot, Roncalli & Salomon (2004) claimed that loss cor-
relations were as low as 4%: we recover this result when we take
corr.N1; N2/ D 38:5% and s1 D s2 D 1:5 in (1), which is the lowest
value observed by Frachot, Roncalli & Salomon for these parameters.
From SAS OpRisk data, we observe that the parameters si have an
average value of 2.03, a standard deviation of 0.42, and range between
1.34 and 2.90. Correlation upper bounds can be computed from this
data with (4) and (5). We find an expected value of 1.33% and a stan-
dard deviation of 1.61%. All but a few correlation upper bounds lie
in the range of 0–4%; the highest correlation has an upper bound at
11.27% and is found between the ‘Execution, delivery and process
management’ and ‘Internal fraud’ cells of the retail brokerage busi-
ness line. All of these studies confirm that we expect low levels of
correlation between cells.
� Correlation parameters in the Gaussian copula model. In the
Gaussian copula framework with lognormal marginal cell losses, the
correlation parameter �ij between two cells is related to the cell loss
correlation:

corr.Li ; Lj / D
e�ij �i�j � 1q

.e�
2
i � 1/.e�

2
j � 1/

(7)

This formula with parameters �i D �j D 107% and a conservative
assumption for loss correlations of corr.Li ; Lj / D 4% leads to a
correlation parameter of the Gaussian copula equal to �ij D 7:2%.
External data supports the assumption of very low correlation param-
eters in the copula framework: much lower than 10%.
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Cutting edge: Operational risk

A class of solvable models with correlated risks
� A simplified LDA model. The rest of this article is dedicated
to building a simple portfolio model for operational risk. We assess
that the bank’s overall operational risk is composed of a portfolio
of N operational risks at cell level. We make the following four
assumptions.

� Lognormal distributions: the loss for cell number i is a lognormal
random variableLi with parameters�i and �i . As discussed earlier in
this article, we assume that the �i have an expected value of � D 107%
and, unless otherwise stated, a variance of v D 18%.
�Gaussian copula: pairwise correlations �ij may be different to each
other. For numerical estimations, we assume that the average correla-
tion is equal to 10% (this is a conservative assumption, as mentioned
earlier).
� One-factor model: cell losses are sensitive to the same systemic
factor, which we denote by F . This factor is assumed to be a standard
normal random variable. The specific (idiosyncratic) part of the risk
is embedded in another independent normal random variable denoted
by �i .i D 1; : : : ; N /. Systemic and specific factors are all assumed
to be independent of each other.
�We assume that the parameters are not dependent on the number of
cells N .

In this framework, the annual loss for a cell can be written as the
exponential function of a normal random variable that is a linear
combination of the systemic and specific factors. For cell number i
.i D 1; : : : ; N / we obtain:

Li D exp.�i � �i .ˇiF C
q
1 � ˇ2

i
�i // (8)

The parameters ˇi are linked to the pairwise correlations of the Gaus-
sian copula: �ij D ˇi � ǰ . Because cells may have very different
risk characteristics, and because correlations may be very different for
different pairs of cells, we assume that the parameters �i , �i and ˇi
are the observations of independent and identically distributed random
variables called M , ˙ and B , respectively. In the limit N !1, the
bank’s loss is equal to N � L.F / and is a function of the common
factor F , as in Vasicek’s model for granular homogeneous loan loss
distributions (see Vasicek 2002):

L.F / D lim
N!1

1

N

NX
iD1

Li

D EŒeM�˙.BFC
p
1�B2�i / j F �

D EŒe�˙BFC˙
2.1�B2/=2 j F � �EŒeM � (9)

Without loss of generality, we assume thatM D 0 because this simply
rescales the bank’s loss by a constant factor EŒeM � in the N ! 1
limit.

The stand-alone capital for cell number i , called KSAi , is equal
to the 99.9% percentile of the cell loss distribution and is given by
KSAi D e��iFq , where Fq D N�1.0:1%/. The bank’s capital
charge is equal to N � L.Fq/. The capital reduction coming from

risk diversification is measured by the Diversification Index, which is
defined as:

Diversification Index D DI D
N � L.Fq/PN
iD1 KSAi

N!1
�����!

L.Fq/

EŒe�˙Fq �
(10)

� Homogeneous risks. The simplest solvable model is obtained
for homogeneous risks: the random variables ˙ and B have constant
values equal to � and

p
�, respectively, for all cells, and v D 0. In the

limit N !1, the bank’s loss distribution remains lognormal:

L.F / D lim
N!1

1

N

NX
iD1

Li D e��
p
�FC�2.1��/=2 (11)

As in Markowitz’s portfolio theory, risk is not diversified away because
of loss correlations between cells. The correlation parameter deter-
mines DI:

DI D e�.1�
p
�/FqC�

2.1��/=2

For � D 107% and � D 10%, we get DI D 17:5%. We note that
DI > 1 when � > �2Fq..1 �

p
�/=.1 � �// D 4:70 and capital

charges are no longer sub-additive. However, super-additivity occurs
for values of the parameter � higher than the typical value of 107%. As
explained earlier, broader distributions can easily be accommodated in
our model by choosing the other solution of (3). This results in effects
similar to those found in fat tail distributions (Neslehova, Embrechts
& Chavez-Demoulin 2006).

The diversification ratio is particularly low because of theN !1
limit. The perimeter and the number of cells is, however, a modelling
choice and a convention. Choosing a very high number of cells would
not necessarily result in regulatory arbitrage. To assess this, the scal-
ing of the parameters of the model with the number of cells must be
investigated.
� Heterogeneous risk and identical correlations. In reality, cells
have different risk characteristics. We assume that the parameters �i
are normally distributed (that is, ˙ � N.�; v/) and that correlations
are constant (that is, B D

p
�). The loss at cell level is:

Li D e��i .
p
�FC

p
1���i /

In the limit N ! 1, the bank’s loss derived from (9) as a Gaussian
integral is:

L.F / D

Z 1
�1

dx
p
v
n

�
x � �
p
v

�
e�x
p
�FC.1��/x2=2

D
1p

1 � .1 � �/v
exp

�
� �
p
�F C

�2.1 � �/

2

C
v

2

..1 � �/� �
p
�F /2

1 � .1 � �/v

�
(12)

where n.x/ D e�x
2=2=
p
2	 . The bank’s loss follows a g-and-h dis-

tribution. Because we assumed that the random variable ˙ is normal
and, strictly speaking, could take negative values, the resulting bank’s
loss is a non-decreasing function of the systemic factor. However, this
occurs when the systemic factorF is larger thanF � D �=v

p
�, which

is very unlikely in practice (for instance, F � D 18:8 when � D 10%,
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Cutting edge: Operational risk

2 Diversification index impact as a function of
p
v (� D 107%,

� D 10%)
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� D 107% and v D 18%). The normal law assumption for˙ is there-
fore suitable to model the tail of the loss distribution, wheneverF < 0.
We show later that the shape of the parameters’ distribution function
is not critical.

The bank’s capital charge, N � L.Fq/, increases with v. For � D
10%, � D 107% and v D 18%, this increase is equal to C62%.
Unsurprisingly, the capital charge is very sensitive to risk dispersion
measured by the parameter v, which is a critical parameter of the
model. Changing the value of � from 10% to 20% leads to a capital
charge increase ofC62%. The average correlation level is also a critical
parameter of the model. As the sum of the stand-alone capital charges
is equal to N �EŒe�˙Fq � D N � e��FqCvF

2
q =2, the resulting DI is a

decreasing function of v. Non-equal parameters �i , when included as
uncorrelated additional risk, increase the capital charge but generate
more diversification, as illustrated in figure 2.

Uncertain correlations
Correlations are not identical to each other, as discussed earlier, but
estimating them from real data is a challenge from a statistical point of
view. Data is scarce, limited as it is to only one observation per year for
the aggregate loss. Estimation of the correlations between the number
of events in each cell is no longer robust for the same reason, and
severity correlations are only observable for cells that have a sufficient
number of events per year. It is current practice to assume identical
correlations among cells even if, in reality, correlations are unknown
parameters. In what follows, we remain in the limit N ! 1 and
correlation uncertainty is included in the model by assuming that the
random variable B has an expected value equal to ˇ D

p
� and a

variance equal to w. For the sake of clarity, we assume that individual
risks are all equal among cells: that is,˙ is a constant equal to � . From
(9) we obtain, in the limit N !1:

L.F / D lim
N!1

1

N

NX
iD1

Li

D EŒe��BFC�
2.1�B2/=2 j F �

D

Z 1
�1

dx f .x/e�x�FC.1�x
2/�2=2 (13)

where the function f .�/ is the density of the random variable B . If we
assume that the variable B is normally distributed, .B � N.ˇ;w//,
we obtain:

L.F / D
1

p
1C �2w

exp

�
� ˇ�F C

.1 � ˇ2/�2

2

C
�2w

1C �2w

.ˇ� C F /2

2

�
(14)

If the variable B is uniformly distributed between ˇ �
p
3w and ˇC

p
3w (the bounds are chosen so that the expected value and the variance

are equal to ˇ and w, respectively), we obtain:

L.F / D

r
	

6w�2
e�

2=2CF2=2

� ŒN.�.ˇ C
p
3w/C F / �N.�.ˇ �

p
3w/C F /� (15)

As pairwise correlations are equal to �ij D ˇi � ǰ , there is a direct
link between the variance of �ij and the variance of the sensitivity
parameters ˇi . Because of the independence of the ˇi , we have:

var.�ij / D EŒˇ
2
i � ˇ

2
j � �EŒˇi �

2 �EŒ ǰ �
2

D w.w C 2ˇ2/

We solve this second-order equation to get the value of w:

w D

q
ˇ4 C var.�ij / � ˇ

2 (16)

For ˇ2 D � D 10% and
p

var.�ij / D 3% (which is a conservative
value compared with that measured from observed data: see above),
we have w D 0:44%; that is, the standard deviation of the parameter
ˇ is equal to 6.6%. The ratio of the capital charge including model risk
(w > 0) to the capital charge without model risk (w D 0) measures
the increase in capital due to dispersion or uncertainty on correlations.
We plot this quantity in figure 3 as a function of the mean deviation of
the correlation parameter (

p
w); we show that the impact of the mean

deviation of the correlation parameter is lower than 2% for
p
w D

6:6% for both the normal and uniform assumptions. Additionally, as
the curves are very close to each other, we conclude that the shape of
the correlation distribution function is not a driver of the capital charge:
this validates the choice of the normal law for distribution functions
that we have made throughout this article.

Even with a much more conservative choice for the individual cell
risk parameter � D 200%, the impact of correlation dispersion on the
bank’s capital charge would be around C5%. Our conclusion is that
correlation dispersion (measured by parameter w) is nowhere near
as critical as the other parameters of operational risk models (aver-
age cell risk � , cell risk dispersion v and average correlation level
ˇ D
p
�).

Conclusion
This article pioneers analytical models for computing banks’ opera-
tional risk capital charges and provides some new results on the cor-
relation problem. These simplified models are fairly realistic as they
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Cutting edge: Operational risk

3 Capital charge impact as a function of the correlation dispersion
for normal and uniform laws (ˇ2 D 10% and � D 107%)
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incorporate dispersion in individual cell risks and correlation levels.
Our main result is that uniform correlation is a robust assumption for
capital charge modelling. This result is important because it means
that model risk associated with the value of correlations is not a major
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issue for capital measurement. The impact of the choice of the copula
function and of the average correlation value is much more signifi-
cant, albeit that calibration suffers because of the scarcity of observed
data. At the end of the day, dependence appears to be a subjective
choice that determines the diversification benefit at the bank level,
and cell loss distribution functions remain the main driver of the cap-
ital charge. We emphasise that our approach can straightforwardly be
extended to other cell loss distribution or copula functions (Student t
for example) in the one-factor framework. The extensions of our ana-
lytical approach should, as a second step, focus on broad distribution
functions for cell losses and a smaller number of cells. This is left for
future research. R
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