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Abstract 
 

This paper investigates in depth the optimal growth rate strategy as an optimal long-term 
investment strategy. We show that it is possible, for an arbitrary probability distribution of stock 
returns, to choose the optimal equity proportion of a long-term portfolio independently of the 
investor’s preferences. We discuss the validity of the asymptotic results when the horizon is finite 
and show that the suggested criterion performs well. We then examine the risk associated with such 
a portfolio. We argue that traditional risk measures are ill-suited for long term investment problems 
and propose to use another measure, the drawdown from maximum, which quantifies the risk that 
an investment has to be ended prematurely while the market conditions are poor.  

 
 

Résumé 
 

Cet article traite des stratégies optimales de long terme, et en particulier de la stratégie de 
croissance optimale. Nous montrons qu’il est possible de choisir la proportion optimale d’un 
portefeuille de long terme à investir en actifs risqués de façon totalement indépendante des préférences 
des investisseurs et pour une distribution des rentabilités des actifs risqués quelconque. Nous discutons 
la validité de ces résultats asymptotiques lorsque l’horizon d’investissement est fini et nous montrons 
que le critère retenu est efficace. Puis, nous examinons le risque associé à ce portefeuille. Nous montrons 
que les mesures traditionnelles de risque sont peu adaptées aux problèmes d’investissement sur le long 
terme et proposons d’utiliser le drawdown par rapport au maximum, qui quantifie le risque portant sur 
une position de long terme qui doit  être retournée prématurément.  
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Abstract 

This paper investigates in depth the optimal growth rate strategy as an optimal long-term 
investment strategy. Following Kelly (1956), we show that it is possible, for an arbitrary probability 
distribution of stock returns, to choose the optimal equity proportion of a long-term portfolio 
independently of the investor’s preferences. The resulting portfolio is the optimal growth rate 
portfolio. We discuss the validity of the asymptotic results when the horizon is finite and show that 
the suggested criterion performs well. We then examine the risk associated with such a portfolio. We 
argue that traditional risk measures are ill-suited for long term investment problems and propose to 
use another measure, the drawdown from maximum, which quantifies the risk that an investment 
has to be ended prematurely while the market conditions are poor. We then present some empirical 
investigations on the American stock markets.  
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1. INTRODUCTION 
Optimal long-term investment strategies have been investigated in two very different 

ways in the financial literature. Many authors have chosen to solve the optimal portfolio 
selection problem (with or without consumption) on an arbitrary finite horizon and to analyze 
the case of large horizons as a special case1. This approach is grounded on the seminal work of 
Markowitz (1952) in the mono-periodic case, of Merton (1971) in the continuous time case and 
of Samuelson (1969) in the discrete time case and has culminated in the book by Merton 
(1990). Important contributions can also be found in Cox and Huang (1989), Bajeux-Besnainou 
and Portait (1998) or Karatzas (1989). The second approach consists in specifically analyzing 
long term investments, with no short term constraints, and in looking for criterions which are 
optimal for such investments, though they are clearly not optimal on arbitrary (possibly short) 
horizons2. This way of tackling the problem was historically pioneered by Bernoulli3 and later, 
from a more financial point of a view, by Kelly (1956) and Breiman (1961). These authors show 
that the optimal portfolio is the optimal growth rate portfolio and that it should be used for 
any long-term investment. Such optimal long-term strategies have been analyzed recently by 
Baviera et al. (1999) or Maslov and Zhang (1998a). 

With the noticeable exception of Kelly (1956), whose approach is grounded on 
Shannon’s information theory, all these works share the same general framework: specific 
dynamics of the assets are introduced on a finite horizon and the investor builds an optimal 
strategy that maximizes her expected utility. Some constraints, such as defined contributions 
for a pension fund (Taillard and Boulier (2000)), consumption problems (see Merton (1990) 
and numerous references therein), inflation hedging as in Campbell and Viceira (2000), are 
often added to the model but do not alter its core and the optimization process focuses on 
utility. Even the optimal growth rate portfolio can usually be recovered as the portfolio of an 
investor with logarithmic utility. 

The major drawback of the utility-based approach is that the utility function is usually 
unknown. In incomplete markets there is no such thing as a representative agent and one has 
to consider the specific utility of each investor when building an optimal strategy. There is yet 
no consensus on the way that one can recover the utility function from empirical observations. 
In fact, since the work of Allais, the use of expected utility as a way of representing agent’s 
preferences has been largely discussed by many authors. 

The use of the expected utility in long term investment can also be questioned for other 
reasons. It is now well known that the maximization of some expected utility functions can be, 
on the long term, unreasonable and should not be used by any sensible investor. The first 
contribution of this paper is to show that indeed, on the long term, some utility functions 
should not be used. More precisely, we show that when the investment horizon goes to 
infinity, the optimal growth rate portfolio is almost surely superior to any other strategy, 
independently of the investor’s preferences. The universal properties of this portfolio are thus 
described in the first section. Though we provide conclusive evidence that when the 
investment horizon tends to infinity, Kelly’s prescriptions should be used, we believe it is 
important to assess the risk that stems from the obvious fact that all investments take place in 
finite time. We thus try to quantify what “long term” means and estimate the characteristic 
time after which it is safe to consider that the investment is a long term one. The second 
contribution of this paper is to give an indication of the horizon after which traditional utility 
theory can and probably should be replaced by Kelly’s approach to long term investing. 

If the investment horizon is long enough, as defined in the first section of the article, 
traditional risk measures such as the VaR on an arbitrary holding period or the variance of the 
terminal wealth are not good indicators of the risk of an investment strategy. This is why, in 
the second section, we deal with another important issue, namely the risk that, for liquidity 
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reasons or other constraints, the manager will have to terminate her investment before its 
expected maturity and with poor market conditions. We argue that this risk is best described 
by the distributions of drawdowns from historical maxima, also called VaR with no horizon. 
Following Maslov and Zhang (1998b), we show that it is possible to compute the asymptotic 
behavior of the distribution of drawdowns as a function of the investment strategy and that 
the distribution of drawdowns of an optimal growth rate portfolio exhibits universal features, 
independently of the stochastic process of the stock returns. The third contribution of this 
article is to provide empirical estimations to support this claim. 

The third section of this article is devoted to empirical investigations. We provide some 
evidence on stock markets to show that Kelly’s optimal strategy can be successfully 
implemented, at least with a degree of confidence equivalent to the one we have when using 
standard strategies. We discuss the practical uses of such strategies and conclude. 

2. LONG TERM OPPORTUNITIES IN THE OPTIMAL GROWTH 
RATE STRATEGY 

2.1 St Petersburg’s paradox 
It is interesting to notice that the problem discussed here is a very old one. It dates back 

to Bernoulli’s (1730) presentation of St Petersburg’s paradox. Suppose that a gambler has 100 
rubbles that she can bet as she pleases on the toss of a fair coin. If she wins, her payoff is equal 
to her bet; if she loses, she forfeits her bet. She can play as many times as she likes provided 
she does not go bankrupt. Which proportion of her wealth should she bet on each toss of the 
coin? It is very simple to show that, in order to maximize her expected payoff, the gambler 
ends up betting all her money each time. So the probability that she is bankrupt tends quickly 
to 1: if she loses only once she will forfeit all her money, even though her expected gain is 
maximal. The reason for this is that the average wealth at maturity is artificially increased by 
random events with increasingly low probabilities. If you win the toss N times, your initial 
wealth is multiplied by 2N, but the probability of this happening is extremely low (2-N). In all 
the other cases, if you invested all your money each time you end up with nothing. Which 
rational investor would make such a choice in the long term? 

One could argue that this is true only for a linear utility and that introducing risk 
aversion will change the whole picture, but it is not the case. Suppose that the investor chooses 
a strategy that consists in investing a fixed proportion λ of her wealth each time. This means 
that her utility function is isoelastic with constant relative risk aversion. In this framework, the 
possible utility functions or relative risk aversions can be mapped on the [0, 1] interval of 
possible λ4. We plot, in Figure Ia and Ib, 2000 observations of the final wealth after 2000 coin 
tossing for several values of λ. In this example, “long term” is reflected by the number of times 
the game is played. The results are given in the decimal logarithmic scale, since for some value 
of λ the wealth is so small that it is otherwise impossible to distinguish it from 0. These graphs 
clearly show that utility is not an issue here and that no rational investor should choose a long 
term strategy other than λ=0, which corresponds to the logarithmic utility function. This is 
shown graphically by the fact that the strategies do not “overlap”, i.e. on the long term some 
strategies yield almost surely a smaller wealth than others. 
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Figure Ia, and Ib: Final wealth in St Petersburg’s game 
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Note: The graphs show, in logarithmic scale, 2000 realizations of the final wealth after 2000 coin tossing. 
Figure Ib is a zoom of Figure Ia for small values of λ. It is clear that some strategies almost surely 
outperform others since the terminal wealths do not “overlap”. 

 
These results are the essence of St Petersburg’s paradox: in a multiplicative random 

walk, expected wealth is not a good indicator of a long term optimal strategy since it is 
essentially dominated by extremely unlikely and extremely favorable outcomes. 

 

2.2 Kelly’s theory of optimal long term investment 
In this section we will consider the case of a discrete time market model. This choice 

stems from two important facts. Firstly, it is obvious that all investments and all price 
observations take place in discrete time since there is not such thing as “continuous trading”. 
The question of knowing whether there exists a more fundamental, somehow theoretical, 
price process which takes place in continuous time and which can only be observed in discrete 
time is a challenging one and we shall not discuss it here. Secondly, we believe it is easier to 
account for non-Gaussian distributions of returns in discrete time than in continuous time, 
especially if we wish to maintain the stationary random walk hypothesis5. However, all the 
results presented here can fairly easily be extended to all price processes such that an 
exponential growth rate exists, including the standard geometrical Brownian motion. 

We will now be more precise and describe Kelly’s criterion in a more general setting. 
Take the case of a market initially composed of one risky and one riskless asset with constant 
interest rate r. Kelly sets and solves the following problem: what is, on the long term, the 
optimal fraction of her wealth that an investor should invest in a risky asset? An agent who 
follows Kelly’s strategy and principles will benefit from the optimal growth rate in the long 
run; in other words, her wealth will increase at a maximal rate. Conversely, an agent who 
seeks to maximize her expected utility will set great store by outcomes that are highly positive 
but increasingly improbable.  

Mathematically, let Wt be the value of a portfolio and l the fraction of Wt invested in the 
risky asset at date t. We adopt a discrete time setting and suppose that the price process (St) of 
the risky asset follows a multiplicative random walk, i.e.:  

)(τ
τ

tX
tt eSS ⋅=+      (1) 

Τhe time increment τ can be taken arbitrary small but in our applications we will use 
τ=1 day or one month. Xt(τ) is the random logarithmic return of the spot price between t and 
t+τ. This model allows for non Gaussian returns as usually observed on most equity markets. 
We will assume that the returns are independent and identically distributed. This assumption 
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is very strong, and probably not very realistic, but it can be relaxed. We plan to allow for some 
predictability of the returns or varying volatility in future research. We also assume that there 
are no transaction costs and that the borrowing and lending rates are constant and equal to r. 

The investor’s strategy is to hold a constant fraction l of her wealth in the risky asset. The 
wealth balance for one period is thus the following: 

( )ττ
τ

tX
t

r
tt elWeWlW ⋅+⋅−=+ )1(     (2) 

We will now use the notation ( )τtX
t eU = . Over a horizon of size N⋅τ and by sending N 

to +∝ we can obtain R the logarithmic rate of return of the portfolio that is equal to: 
( ) ( )( )( ) ττ relElR rX +−+= − 11ln . By the central limit theorem the typical – i.e the most 

likely value TW of the portfolio grows asymptotically at this exponential rate: ( )TlR
T eWW 0≈  .  

By concavity of the logarithm, if a l* exists such that R(l*) is maximal, then it is unique 
and given by the following first order condition (p is the density of the random variable u): 

( ) ( )∫
+∞

−

−

=
−+

−
=

0

* 0)(
1*1

1 duup
uel

uel
dl
dR

r

r

τ

τ

   (3) 

l* is the optimal growth rate strategy and it is the one recommended by Kelly. Let us 
note that, in this setting, the actual results derived from Kelly’s criterion are the same as the 
one we could obtain using a logarithmic utility function. However, this should not hide the 
fact that these two approaches have radically different interpretations.  

At this point one could ask why is the typical wealth more universal than the average 
wealth or any utility function, when analyzing agent’s preferences. The long-term hypothesis 
is the key to understanding why Kelly’s criterion gives indeed the optimal strategy.  Actually, 
the average rate of return between the initial date t=0 and time t, , is the 
only quantity that converges in probability to its expected value as time goes to infinity. The 
central limit theorem then gives the following Gaussian density at time t for the random 
variable z

( 0
1 /ln WWtz tt

−= )

t : 

( )
( )

( )( )
( ) tl

lRz

t

t

e
lt

zf /2 2

2

/2
1 σ

σπ

−
−

=                                                           (4) 

The average of the random variable zt is constant over time, whereas the dispersion 
decreases as the square root of time. Therefore, whatever the value of the dispersion, in the 
limit of an infinite horizon, the portfolio with the highest typical growth rate has to be 
preferred since the wealth will almost surely be greater. The dispersion σ(l) can be computed 
numerically but in the asymptotic limit it has no impact. In practice, however, it will be 
important to assess its actual impact since all investments necessarily take place in finite time.  

2.3 Universal properties of the optimal growth rate portfolio 
To better grasp the universal nature of Kelly's theory, let us state the problem differently 

and consider the case of two agents with the same unspecified utility function V. The first one 
invests her money so as to maximize her expected utility using the ratio l1 of risky asset, the 
other invests following Kelly's strategy l* and maximizes her logarithmic rate of return. As the 
game repeats, the probability of the first agent's utility exceeding the other agent’s utility tends 
to zero. And yet, the first agent has maximized her expected utility. Mathematically, we have, 
for N→∞:  

( )( ) ( )( )[ ] 0Pr *
1 →≥ lWVlWV NN  whereas ( )( )[ ] ( )( )[ ]*

1 lWVElWVE NN >    (5) 
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This equation is probably the key to understanding the normative properties of the 
optimal growth rate portfolio. To put it in plain English, if you maximize your expected utility 
– except, of course, log utility - instead of investing according to Kelly’s theory, you are almost 
certain, on the long term, to end up with a smaller utility. Expected utility is simply not a good 
measure of the terminal utility! This is why we argue that on the long term, utility is not a 
relevant measure of investor’s preferences. The reason for this is exactly the same as the reason 
for not betting all your money in St Petersburg’s paradox; in a multiplicative random walk, 
someone investing according to its expected utility (excluding logarithmic utility) sets 
exponentially increasing weights to outcomes with exponentially decreasing probability. We 
believe that on the long term, and we will try to quantify this later on, no rational investor 
should behave this way. 

There is yet another way to visualize the optimality of Kelly’s criterion. Suppose that the 
portfolio has been rebalanced to maintain a fixed proportion l of risky asset during N trading 
periods and that the observed return at each date t is equal to Xt. Whatever the utility function 
of the investor, she seeks to earn more money, since her utility function is increasing with her 
wealth. Therefore, ex-post, knowing the actual returns, the optimal constant mix strategy is the 
one that maximizes WT with respect to l. Then, independently of any stochastic model, 
maximizing the wealth leads to the following first order condition:  

( ) ( ) ( )∑ =
−+

−
⇔=

∂
∂

−

−

i
rX

rX
T

i

i

el
el

l
W

0
11

10
ln

*
*

τ

τ

τ

τ

                             (6) 

This equation is exactly the equation (3) defining l* except that we did not take an 
average following a particular distribution but the actual time average of the observed returns. 
When the time goes to infinity and if the process (Xt) is ergodic the law of large numbers tells 
us that these two definitions coincide and therefore that Kelly’s optimal l* leads to the 
maximum wealth. This shows again, if necessary, that Kelly’s criterion has universal, 
independent of agent’s preferences, properties. 

 

2.4  When is long term long ? 

Kelly’s criterion is valid asymptotically. The problem is that we never invest on an 
infinite horizon. Let us call T the finite horizon of our investment. The question is to know 
whether T can be considered a long-term horizon or not. To answer it, we will compare Kelly’s 
criterion with another one, for example coming from utility theory. More specifically, we will 
calculate, for large T, the probability that Kelly’s strategy performs better than another one 
and study how this probability converges to 1. A utility-based criterion will lead to an 
investment strategy characterized by a given value of Kelly’s coefficient. This value can be 
time dependent, but we will only consider here time independent strategies, i.e. isoelastic 
utilities6. We calculate the following quantities that tell us when our long-term strategy is 
better than another strategy : 

)](ln*)([ln lWlWP TT >               (7) 
This quantity goes to 1 when T goes to infinity. The convergence can be shown to be 

exponential in the case of i.i.d. returns. The characteristic time of this exponential is the limit 
after which T can be considered long term. In this section we calculate it explicitly in the 
binomial and geometrical Brownian motion models. In the more general case such quantities 
can be calculated in the asymptotic limit using equation (5), though the calculations can be 
quite challenging for arbitrary distributions of returns. However, one can also show that the 
convergence is exponential, with a correcting logarithmic term that accelerates convergence.  
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2.4.a.  A simple binomial setting 
We now suppose that the riskless interest rate is 0. In the binomial model, the stock price 

between date t-1 and date t can only take two values, u and 1/u with probability p and 1-p 
respectively. Let us call tε  this random variable ; the expected growth rate R of a portfolio 

invested into l risky assets and 1-l riskless assets is ( ) ( ullplulpR /1ln)1(1ln +−−++−= ) . 
The optimal portfolio is obtained by maximizing the expected growth rate ; we obtain : 

1
1)1(*

−
−+

=
u

upl                       (8) 

We can now compare this optimal portfolio to any other sub-optimal portfolio 
characterized by the proportion  invested in the risky asset. Explicit calculations, 
available from the authors upon request, show that of the probability that Kelly’s strategy is 
better than a sub-optimal strategy has a long-term approximation: 

)( *lll ≠

T
eklWlWP

T

TT

0/

0
* 1)](ln)([ln

τ−

−≈> ,     
2*0

)(

)1(4

RR

pp

−

−
=τ                (9) 

After  the characteristic time τ0 we can consider that the horizon is long enough to beat 
another strategy. A corollary of this result is that we can compute the probability that Kelly’s 
strategy will perform better than an investment with fixed return R0. The long-term 
approximation is given by: 

T
ekTRlWP

T

T

1/

10 1])([ln
τ−

−≈> ,    
2

0
1 )(

)1(2
RR

pp
−
−

=τ                  (10) 

After  the characteristic time τ1 we can consider that it is possible to secure a return equal 
at least to (R0 - R ). Figure IIa and IIb show the exact values of these probabilities using realistic 
parameters of a binomial stock market. 

Figure IIa and IIb: Probabilities that Kelly’s strategy is superior to other strategies (left) or exceeds a 
fixed return (right) 
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Note: The left figure shows, for various horizons and fractions invested in the risky asset, the 
probability that the terminal wealth using Kelly’s strategy is superior to other strategies. On the right 
figure, we plot, as a function of the fraction invested in the risky asset, the probability that the final 
return, after 500 months, is superior to a 5% yearly return. The risky asset follows a binomial random 
walk with the mean annual return set to 10% and the volatility equal to 25%. The asset manager 
rebalances her portfolio every month. The optimal fraction is l*=1.6 

 
The probability of exceeding a 5% yearly return is high at the Kelly optimum, almost 

70%. Recall that these results were obtained using a riskless interest rate equal to zero. It is 
therefore possible to secure an almost riskless investment using Kelly’s long term strategy, 
despite the lack of a riskless asset. We now turn to the case of continuous time modeling, 
namely Merton’s (1971) model of optimal investing. 
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2.4.b.  A continuous time setting 
The standard approach to calculating the optimal fraction of a risky investment has been 

derived by Merton (1971) in the continuous time setting. We will now show that, even under 
the standard diffusion assumptions, any rational investor should use Kelly’s criterion on the 
long term. Let us suppose that the risky asset follows a geometrical Brownian motion with 
drift μ and volatility σ and that the riskless asset has a constant return r. We also suppose that 

the investor has an isoelastic utility function7, i.e. 
α

α

−
=

−

1
)(

1WWU  where α is the relative risk 

aversion of the investor. Merton (1971) shows that, whatever the time horizon considered, the 

optimal fraction of her wealth invested in the risky asset is equal to ⎟
⎠
⎞

⎜
⎝
⎛ −

= 2
1

σ
μ

α
rlM . The value 

α=1 corresponds to the logarithmic utility function and is exactly equal to Kelly’s strategy. 
However, if α≠1 and if the time horizon is large enough, such a strategy is not optimal. The 
diffusion equation satisfied by the wealth Wt of the investor who uses a constant fraction l is 
the following (BBt is a standard Wiener process.): 

( ) ( )[ ] t
t

t dBldtrlr
W

ldW
⋅⋅+−+= σμ                                          (11) 

This equation can be explicitly solved and we can compute the probability that one 
strategy outperforms the other. In the α>1 case, we have (BB1 has a standard Gaussian 
distribution): 

( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +

−−≤=>
α

αλ
2

11PrPr 1 TBlWlW KTMT                           (12) 

One should also be aware that extremely risky strategies, i.e. α<1, are in some sense 
stochastically dominated by the Kelly strategy since they provide a lower return with more 
risk8. From these equations we can easily compute the theoretical characteristic time, only a 
function of α and λ. In Figure III we plot this probability for various values of the risk aversion 
and maturities. The annualized parameters we used are r=4%, μ=15% and σ=20%. 
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Figure III: Comparison of Merton’s and Kelly’s strategies 
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Note: For various risk aversions α, we plot, as a function of time, the probability that the terminal 
wealth is higher when using Merton’s strategy instead of Kelly’s. We give the exponential fit and the 
R2 of this fit which are veru close to 1. We also indicate the characteristic time after which Kelly’s 
strategy outperforms Merton’s strategy. The risky asset follows a geometric Brownian motion with 
r=4%, μ=15% and σ=20%. We also indicate, for each risk aversion, the corresponding optimal fraction 
invested in the risky asset. The Kelly optimal fraction is l*=2.75. 

 
As seen from Figure III, the probability that Merton’s strategy is superior to Kelly’s 

tends quickly to 0 for long horizons, except for very small risk aversions (i.e. when α→1+) for 
which the characteristic time is rather long and the strategies close to the Kelly optimal 
strategy. For α<1, the investor is risk-seeker, and the characteristic time decreses with this 
coefficient. In this framework, it is important to notice that the decay of the probability is 
exponential only up to a correcting logarithm term. A more precise asymptotic expression is 

given by 
( )TT

ek
ln

2
1

−−
⋅ τ , as can be shown using the asymptotic expansion of the Gaussian 

distribution function. Therefore, the theoretical characteristic time given by τ is not exactly the 
characteristic time that we estimate empirically and it is larger. 

 

3.  SHORT TERM DRAWDOWN RISK IN THE OPTIMUM GROWTH 
RATE PORTFOLIO 

3.1 Drawdowns risk and VaR with no horizon 
We have seen that, on the long term, Kelly’s long term criterion is clearly relevant. 

However it is important to assess the risk taken by an investor whose horizon is not as long as 
she expected. Imagine for example the case of an asset manager who chooses to invest her 
portfolio on a long-term strategy and who faces sudden liquidity constraints. The risk she is 
facing is the risk that her wealth at that specific point in time will be under an historical high 
and below her long-term expectations. Though the analysis of VaR or standard deviations can 
bring a light on such questions, we believe they are not good indicators of risk for a long-term 
investment. The main reason for rejecting volatility measures lies in the strongly non-Gaussian 
character of stock returns. We do not use VaR either because it is impossible to know the 
horizon over which VaR should be calculated since the risk is precisely the risk of having to 
terminate the investment at a future unknown date. Therefore, we need a measure of risk that 
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is not explicitly linked to a time horizon. Moreover, VaR is above all a solvency criterion and 
as such is not very relevant to a long-term investor since solvency should not be an issue and 
short-term fluctuations should not constrain too much his long-term goals. Another well 
known drawback of the VaR risk measure is that it is not sub-additive as pointed out by 
Artzner and al. (1997) ; this drawback is relevant for portfolio issues. 

Another possibility is to use the VaR over the entire investment horizon. However, the 
problem is that, on the long term, the law of large number will lead to a smaller VaR for the 
optimal growth rate strategy, whatever the chosen probability threshold. It is only if the 
probability threshold is a function of the investment horizon that such a measure is 
meaningful. More generally, if the risk measure is defined only on the wealth at the final date 
of the investment, the optimality of Kelly’s strategy will lead to the - false - idea that it is a 
riskless investment, at least if the investment is carried over a long enough period of time. The 
real risk stems from the fact that there is no guaranty that this will actually be the case. 

We believe that the best way to study long term risk is to analyze the drawdowns 
distribution. The definition of a drawdown is precisely the following : at time t, the drawdown 
from maximum is : 

( ) [ ]

t

sts

W

WMax
tD ,0∈=      (13) 

where Wt is the value of the portfolio at date t. Please note that this risk is more an 
opportunity risk than the risk of loosing money in the investment, since the drawdown is 
measured from the previous maximum and not from the initial wealth. D(t) is also called VaR 
with no horizon since it describes losses on no prespecified horizon. It also provides a measure 
of the frustration of the investor, forced to liquidate a position that was worth more in the past. 
However, it is not a coherent measure of risk as decribed by Artzner and al. but this is out of 
the scope of this article. 

The ability to control these drawdowns might turn to be crucial if one has no guarantee 
that the investment can be maintained until maturity. Maslov and Zhang (1998b) have shown 
that, in the multiplicative random walk framework, these drawdowns have a stationary 
unconditional distribution which is asymptotically equivalent to a power law if the drift of the 
random walk is positive (i.e. X has positive mean). Therefore, controlling the drawdown risk is 
equivalent to controlling the decay factor of this power law, at least for large drawdowns 
which are certainly the most relevant for investors. More precisely, these authors show that if 
the behavior of the wealth obeys the dynamics of equations (2)-(3) and if we denote by π the 
distribution function of the log returns of the wealth, then for large values of the drawdown D, 
the distribution of D behaves as: 

Γ
≈=>

x
xPxDP 1)()(   with ( )∫ =Γ− 1dxex xπ    (14) 

In the Gaussian case with drift equal to μ and variance equal to σ2 we have Γ=2μ/σ2.. 

3.2 Drawdown risk in the optimal growth rate portfolio 
How can the investor control these drawdowns ? Let us assume, for the sake of 

simplicity, that the interest rate is 0. If the risky asset follows a multiplicative random walk, so 
does the wealth if a constant fraction l of the wealth is invested at each date. The new 
logarithmic return is ( )XlelY +−= 1ln . At the Kelly optimal ratio, equation (14) with Γ=1 
written for the random variable Y is equivalent to the first order condition defining l* and 
implies that the drawdown exponent is equal to 1 for any probability law for the variable X. 
At the Kelly optimum, whatever the probability distribution, the drawdowns have a well-
known and universal asymptotic behavior, though a risky one.  
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The investor using the Kelly optimal strategy has an advantage in doing so, apart from 
the optimal growth rate: she knows exactly the asymptotic behavior of the probability 
distribution of the drawdowns since it decays like a power law with fixed exponent. The Kelly 
strategy appears to be a very aggressive one, since the drawdowns have theoretically an 
infinite average at the Kelly optimum. It is therefore of crucial importance that this strategy be 
limited to cases where the manager is absolutely positive that no exterior constraints will force 
him to liquidate his position before the prespecified horizon. This strategy is probably well 
suited for investors who are not likely to face sudden liquidity constraints and who really 
have the time to capitalize their investments. In the next section we perform empirical 
investigations on stock markets to show that both the long-term opportunities and the short-
term risk of the optimal growth rate strategy that we just describe are supported by empirical 
data. 

4. EMPIRICAL INVESTIGATIONS 
In this section we perform empirical investigations to support the claims made in the rest of 
the article. We first analyze the stability of the empirical estimation of l*, then we show that the 
long term opportunities of the optimal growth rate strategy are genuine and finally provide 
conclusive evidence to show the validity of the theoretical results of section 3 regarding 
drawdown risk. 

4.1. Stability of l* and choice of sample 
We first give two ways of estimating l*. Consider the modified returns:  

( )11
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−
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−
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Y                                                              (15) 

Using the first order condition defining l* one shows that these returns have a zero 
average for l=l* and therefore a standard optimization algorithm can give l*. Another 
approach is to compute the cumulants of the standard returns and to use the following 
formula (see Legras and de Monts de Savasse (2000)) : 

( ) ( )( )33
4

2
2

32
* /32 σμμ
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κχμ

σ
χ

σ
μ

o+
+−

++=l                                           (16) 

The parameter μ is the average, σ the standard deviation, χ the skewness and κ the 
kurtosis of the returns. Similar formulas are available for the standard deviation of l*. 

A question remains to be answered : what is the sample that should be used when 
estimating l* ? The dilemma can be expressed as follows. If one uses a very long sample it is 
less likely that the returns will be identically distributed. However, if one uses short data sets, 
the statistical estimations are not very significant. Since the essence of Kelly’s optimal leverage 
is to be a long-term optimum we chose long term estimations. It seems important to use long 
data sets especially if some extreme events, such as the October 1987 crash, occurred some 
time ago. Not taking these values into account could lead to overestimating l* thus leading to 
possible bankruptcy9. In Figure IV we illustrate our point by plotting the estimation of l* for 
various sample sizes on the S&P 100 dataset. 
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Figure IV: Estimation of l* for various sample sizes, S&P 100 Index 
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Note: we plot the estimated value of l* on the S&P 100 Index using the non-parametric approach for 
various sample sizes. The data set comes from Datastream and gives the daily closing prices of the S&P 
100 index for the period going from March the 3rd 1984 to December the 31st 1998. We also indicate the 
daily returns. The impact of the 1987 crash is blatant. These estimations were performed with r=0. 

Without the 1987 crash the estimated value of l* is almost 50% above the one obtained 
using the whole sample. The optimal leverage estimated with 2000 trading days (around 7) 
leads to bankruptcy if it used before the 1987 crash. In fact, any value above 4.74=1/21% leads 
to bankruptcy. This shows the importance of having upper limits to the optimal leverage and 
stress the importance of the boundedness of the distribution. Estimations on other indexes, 
available from the authors upon request, yield similar results. 

4.2 Empirical stability of l* and long term opportunities  
We have seen that the statistical estimation of l* is not very precise. However, what is 

really important is to know whether this estimation can be used to implement a good 
investment strategy. What are the results of a long-term strategy designed using a long-term 
estimation of l* ? It is clear from the simple statement of this question that we will need very 
long data sets to answer it. The first option is to use intraday data, for which millions of prices 
are sometimes available. In this article we focus on the asset manager’s point of view, for 
which systematic intraday trading is not very realistic. 

We first studied five indexes of the NYSE for which 33 years of daily data are available, 
from January the 3rd 1966 to December the 31st 1998. These indexes are the NYSE Composite, 
Industrial, Transports, Utility and Finance indexes. For each index we estimated the optimal 
value of l* using the whole sample and the optimal value of l* using two sub-samples of the 
same size, the separating date being November the 25th 1982. The stability of l* was 
investigated when switching from the first subsample to the second one. This stability is not a 
theoretical issue only and is crucial to the investor since, as we have seen in the first section, 
the estimated value of l* for a sample is exactly the value of l* that guarantees the maximum 
wealth at the end of the sample. 

There is a major difference between our theoretical framework and empirical data, 
namely the fact that interest rates change. If we want to take this effect into account we may 
either assume that the daily returns minus the daily interest rate follow a random walk or 
assume that the daily returns themselves follow a random walk. We can therefore use one of 
these two models : 
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If one model is correct, the corresponding Xt variable is i.i.d. and therefore l* is stable. In 
order to check which model is the best we thus looked at the stability of l* under both 
assumptions. The interest rates we used are the daily yield to maturity of a 3 months T-Bill 
provided by the Federal Reserve Bank of Atlanta10. The results are given in Table I. 
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Table I: Stability of l* for NYSE Indexes 
   COMPOSITE INDUSTRIAL TRANSPORT UTILITY FINANCE 

l* 3.46  3.36  3.26  2.70  2.69  
Whole Sample Std dev 0.99  0.93  0.67  0.93  0.95  

l* 2.05  2.20  1.20  -0.55  2.24  
Sample 1 Std dev 1.86  1.72  1.40  2.51  1.76  

l* 3.94  3.76  3.97  3.10  2.87  

Model I 
Constant interest 
rate (variable risk 

premium) 
Sample 2 Std dev 0.98  0.94  0.84  0.78  1.09  

l* 0.70  0.96  2.64  0.29  0.50  
Whole Sample 

Std dev 1.22  1.13  0.39  0.94  1.04  
l* -1.95  -1.22  -1.08  -7.60  -1.37  

Sample 1 Std dev 1.84  1.71  1.39  2.39  1.75  
l* 2.50  2.48  3.30  2.14  1.49  

Model II 
Variable interest 

rate 
(constant risk 

premium) Sample 2 Std dev 1.41  1.32  0.77  1.18  1.25  

 
Note: We estimate the values of l* as well as standard deviations using the non-parametric approach for 
the three different samples. In model I and II the estimated values of l* are very different simply 
because in model I we do not take interest rates into account (we assume r=0), whereas we do in model 
II.  
 

The estimated values for l* are not very stable. The standard deviations are high and 
values of l* can switch from 0.29 to –7.6 in the worst case! However model II is clearly not the 
most realistic. This justifies the estimations performed in the previous sections with r=0. 
Under this hypothesis the values for the whole sample and for sample 2 are quite close. The 
values for sample 1 are not as close – except for the Finance index – but the standard 
deviations are high.  

This means that, in order to implement Kelly’s optimal strategy in practice, the actual 
value of l* one should use has to be computed with constant interest rates and then needs 
daily adjustment as the short term (one period) interest rate moves. Similar results, again 
available from the authors upon request, can be obtained on individual French stocks. 

This short empirical study has shown that though some errors remain, there is some 
stability in the estimation of the optimal strategy. However, this stability is obtained if the 
dynamics of the interest rates are not taken into account, i.e. if the estimations of l* are 
performed with a constant interest rate. This suggests that the risk premium on the stock 
market is not constant and that a long-term investor should adapt her strategy to the daily 
values of short-term interest rates. 

We have seen that the optimal value of l* is correct but far from excellent. These results 
should be compared to the one obtained using more standard approaches, such as Merton’s 
(1971) optimal investment strategy. It is well known that the relative risk aversion of an agent 
is difficult to estimate and this imprecision has a direct impact on the optimal strategy since 
the relative error made when estimating the risk aversion is exactly equal to the relative error 
made on  the optimal leverage. Therefore, a simple application of standard portfolio 
optimization can also lead to substantial errors in the calculation of the optimal leverage even 
if the parameters of the diffusion are perfectly known. 

Moreover, in Merton’s (1971) case the errors can also stem from improper estimation of 
the parameters of the diffusion. This issue has been discussed in depth by many authors. For 
instance, Chopra (1993) showed that tiny errors in the inputs could drastically modify the 
optimal portfolios in the mean variance framework. As regards the utility function, Kallberg 
and Ziemba (1984) found that utility functions with similar risk aversion yield roughly the 
same optimal portfolios whereas different risk aversions lead to substantially different 
portfolios. A simple way to put it is that basically if you cannot predict the future average 
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return you cannot find the optimal portfolio. This is true both for the mean variance approach 
and in Merton’s (1971) model and it is not surprising that it still holds for Kelly’s strategy. 

In Table II we give the estimated optimal leverage with different relative risk aversions 
for NYSE data using the same sample and sub-samples as before. 

Table II: Stability of the optimal strategy with Merton’s approach 
   COMPOSITE INDUSTRIAL TRANSPORT UTILITY FINANCE 

Whole Sample l* 1.42  1.36  0.27  0.90  0.90  
Sample 1 l* 0.52  0.60  0.10  -0.78  0.62  RRA = 2 
Sample 2 l* 2.08  1.94  0.33  1.29  1.05  

Whole Sample l* 0.71  0.68  0.14  0.45  0.45  
Sample 1 l* 0.26  0.30  0.05  -0.39  0.31  RRA = 4 
Sample 2 l* 1.04  0.97  0.17  0.65  0.53  

Whole Sample l* 1.89  1.81  0.37  1.20  1.21  
Sample 1 l* 0.70  0.80  0.13  -1.04  0.82  RRA = 1.5 
Sample 2 l* 2.78  2.59  0.45  1.72  1.41  

 
Note: We estimate the optimal strategies for the three different samples with various risk aversions. 
Following our previous findings, we did not take interest rates into account.  

 
The stability of the optimal leverage is as good (or as poor) as the one obtained using 

Kelly’s theory. In fact, this instability is not intrinsic to one approach or the other. It comes 
from the more fundamental instability of the average and standard deviations of daily returns. 
This is why we believe that Kelly’s criterion should be used in the same way as asset managers 
use Merton’s (1971) theory or mean variance allocation.  The actual parameters of the 
multiplicative random walk used in the optimization should be representative of the 
manager’s anticipations regarding the behavior of the risky asset and not be the result of past 
statistical estimations. Once the manager has formulated her anticipations for the average 
return, standard deviation and higher moments of these returns, she can use formula (16) to 
determine an optimal strategy coherent with her expectations. Of course, this means that the 
manager is able to anticipate properly not only the drifts and volatilities but also skewness or 
kurtosis. This is the price to pay in a non-Gaussian world! 

4.3 The asymptotic drawdown distribution 
In this subsection we show that the theoretical presentation of section 3 is indeed 

relevant. More specifically, we show that the unconditional asymptotic distribution of 
drawdowns is well described by a power law and that at the Kelly optimum the exponent of 
this power law is close to 1. 

As always in statistics we are confronted with a sample problem. The theoretical result 
is an asymptotic one, therefore in the analysis we need to use only a small fraction of the 
observed drawdowns and discard the small drawdowns. Moreover, finite size effects will 
inevitably appear at the other spectrum of the drawdowns, i.e. for the largest drawdowns. In 
order to estimate the best sample to be used, we first performed a Monte Carlo simulation in a 
case where the exact asymptotic behavior of the drawdowns and the value of Γ are known. 
The results, not indicated for the sake of brevity, show that a good estimation of Γ can be 
obtained if we do not use the most extreme part of the distribution, i.e. if we discard the worst 
1% of the drawdowns.  

We then checked the asymptotic property of the distribution of drawdowns on several 
individual stocks as well as stock indexes. We studied the five indexes of the NYSE described 
above for the same time period. For each data set, we performed a linear regression of the log-
drawdowns on their log-probabilities, estimated empirically, on the range going from the 
worst 5% to the worst 1% of the drawdowns. The results are presented Figure Va and Vb.  
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Figure Va and Vb: Asymptotic distribution of drawdowns 
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Note: For five sectorial indexes and seven individual stocks, we plot, in logarithmic scale, the 
drawdowns as a function of their cumulative probability of occurrence estimated by their rank divided 
by the number of data. The data set, coming from Datastream and the NYSE, gives the daily closing of 
the stocks and indexes. The good linear fit shows the validity of Equation (20). The individual stocks 
are quoted on the Paris Stock Exchange for the period going from 1974 to 1999. 

 
The results are good and the R2 range from 82.33% to 99.8%. There is only one case 

where the R2 is under 94%. This shows that the asymptotic expression given in equation (16) is 
very robust both for individual stocks and for indexes. 

We now want to test the asymptotic property of the drawdowns of the optimal growth 
rate portfolio. We tested these theoretical results on the S&P 100 index for the period going 
from March the 3rd 1984 to December the 31st 1998. This sample, taken from Datastream, has 
3870 daily values and includes the dramatic crash of October 1987. Figure VI illustrates the 
distribution of drawdowns in logarithmic scales for a portfolio invested in the S&P 100 index 
with several values of the leverage l. Values of l>1 are authorized. The Kelly optimal value of l 
can be estimated at 4.02 on this market with a zero interest rate. Therefore, we estimated the 
distribution of drawdowns for l=1, l=2, l=3 and l≈l*=4.  

Figure VI: Distributions of drawdowns for strategies in the S&P Index 
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Note: We first plot, for various constant mix strategies, in logarithmic scale, the drawdowns as a 
function of their cumulative probability of occurrence estimated by their rank divided by the number 
of data. The data set comes from Datastream and gives the daily closing prices of the S&P 100 index for 
the period going from March the 3rd 1984 to December the 31st 1998. The good linear fits show the 
validity of Equation (16) for all the strategies.  

 
It appears that the actual value of Γ is not far from the theoretical value for l=l* since we 

have Γ=1.29. The difference with our theoretical framework could come from serial 
dependence in the data. One could imagine, for example, that when the market is extremely 
low, compared to historical maxima, investors feel that it is not likely to go down any further 
and therefore tend to be a little more bullish, pushing the market up. A mean reverting 
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mechanism or psychological barriers could thus be responsible for such a change in Γ. 
Following that interpretation, the distribution of drawdowns should have thinner tails as 
compared with the random walk case and Γ>1.  

6. CONCLUSION 
In this article, we have investigated the relevance of the optimal growth rate portfolio 

for long term fund management. We have shown that on the long term the expected utility 
can be a poor investment criterion. We then have been able to quantify the time horizon over 
which Kelly’s criterion is relevant and over which it is possible to claim that a strategy is 
superior to another. This provides quantitative comparisons between different criterions on a 
long-term horizon. We also analyzed the risk associated with such strategies and showed that 
it is best described by the distribution of drawdowns from maxima, or VaR with no horizon. 
We studied the asymptotic distribution of these drawdowns and performed empirical 
estimations that confirmed the theoretical power law behavior. We argued the optimal growth 
rate strategy has a universal behavior, and is a rather risky one ! This confirms that the long 
term opportunities of the optimal growth rate portfolio are somehow balanced by an 
increased risk if the investment has to be terminated earlier than expected. 

In practice, however, the real distribution of returns is not known and the optimal 
strategy is only estimated. We have focused on the empirical estimation of Kelly’s parameter 
with various techniques and the stability of the estimations has been investigated. We have 
shown that this stability is as good – or as poor – as the one obtained using other investment 
criterions such as expected utility. We argued that as long as you cannot predict the future 
mean return, all investment criterions are somehow doomed to fail. A more pragmatic 
approach is therefore to use the investor’s expectations regarding future fluctuations of the 
market and to choose the optimal strategy accordingly. We provided a parametric expression 
giving the optimal growth rate portfolio as a function of the first four cumulants of the stock 
returns. 

We believe that future research should address several important questions. The first 
interesting problem is the calculation of optimal growth rate portfolio with conditional 
distributions of returns (for example time varying mean and volatility). How should an 
investor adapt her investment policy to stochastic returns or volatility when these variations 
are observable ? Another interesting question is to estimate the cost of using unconditional 
strategies when there is some predictability on the returns or volatility, as some works suggest 
(see Barberis (1999) and references therein). 
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1 In many cases, however, the results are independent of the selected horizon 

2 Please note that the point is not to know if the portfolio is optimal or not but to know if the 

criterion is optimal 

3 It can be argued, however, that Bernoulli also pioneered the first approach! 

4 In this simple game we assume no short selling or leverage is possible. 

5 We can extend our results to markovian dynamics but the case of long memory is more 

challenging. 

6 At the asymptotic limit, if the process is a simple random walk, it can be argued that time-

varying strategies are meaningless since the horizon is unchanged. 

7 Other utility functions do not lead to a constant value for l* and thus cannot benefit from the 

optimal growth rate either. 

8 We are grateful to Pr. Ziemba for pointing this out. 

9 In discrete time, the question of the boundedness of the distribution is actually an important 

one. The actual definition of l* gives precise bounds to its value since the non-bankruptcy 

condition implies an upper bound to l*. Assuming r = 0 (this simplifies equations without 

changing any of the results) if the probability distribution of X is not bounded then we 

necessarily have l*∈[-1,1]. Any other value of l* means implicitly that the distribution is bounded. 

Roughly, the maximum possible value of l* is 1/Xmax where Xmax is the maximum possible drop of 

the risky asset’s price. In many cases however, with unbounded distributions of X such as the 

Gaussian distribution, the actual solution of equation (3) which defines l* is greater than 1. This 

does not mean that the optimal value l* is greater than 1 but that the first order condition does not 

hold and the optimum is to be found at the frontier of the admissible values, i.e. l*=1. The 

problem with this reasoning is that it is impossible to distinguish empirically a bounded 

distribution from an unbounded one. For Gaussian returns, the data set required to observe a 

99% drawdown in one time period with a volatility of 1% is unbelievably large! This means that it 

is impossible to tell if the estimated value of l* is relevant or not. In practice, we assume that the 

distribution is bounded by an arbitrary market move. 

 19



                                                                                                                                                                   

10 This was used as a proxy for an overnight, or spot/next, interest rate for which no historical 

data was available. 
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