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Executive summary

Operational risk is the risk of loss resulting from inadequa te or failed internal processes, people and systems or from
external events

« This definitionincludes legal risk, but excludes strategic and reputational risk

In the post-crisis environment, operational risks with unu sual severities emerge regarding litigations
« Litigations with regulators
- Litigations with clients

New risks emerge from the technological transition: cyber r isk

Regulators have recently published new guidelines and meas urement standards for the capital charge measurement. OR
capital charges are now often larger than market risk capita | charges in large banks

The Loss Distribution Approach (LDA) is the reference appro ach for measuring operational risk, but the range of practic esis
large and data are scarce

* Modelling choices (model risk) : severities, correlations, structure of the model
« Calibration and validation issues
« Few analytical results
Agenda
« Context: emerging risks and regulation
+ New results on OR correlations

+ New results from classification invariance
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EMERGING RISK AND REGULATION
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Operational risk is expensive

Rogue Trading
Barings (1995): $ 1.3 MM
Allied Irish Banks (2002): $ 691M
Société Générale (2008): € 4.9 MM
Caisses d'Epargne (2008): $ 938 M
Merrill Lynch  (2009): $ 456 M
UBS (2011) : $2.3 MM
Credit Suisse (2012): $ 2.85 MM

Terrorist Attacks

New-York (2001)
Madrid (2004)
London (2005)

/ Reg. Rules Breach

2012-2014
OFAC
BNPP: $9 MM
HSBC: $ 1.9MM

Libor
UBS: $1.53 MM
Rabobank: $ 1.07 MM

./

Client litigations \
2012-2014
Subprimes

BoA: $17 MM
JP Morgan : $ 13 MM
Payment Protection Insurance
Lloyds : $ 8.3MM
RBS: $2.67 MM
HSBC : $1.7MM
Barclays: $3.1MM

Systems Failure

Knight capital (2012): $ 440M

Fraud
Madoff (2008)

« Madoff du var » (2011)

Natural Disaster
Fukushima (2011)
Katrina (2005)
Sandy (2012)
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How do banks measure and manage operational risk?

+ Internal losses collection
+ Most of the advanced banks have started to collect datas between 2000 and 2005
« Useful for high frequency and low severity risk
+ Externalloss datas
« Several providers + one consortium gathering up to 70 large banks around the world (ORX)
« External datas are not representative of the bank’s risk => scaling issue
« Scenario analysis
» Represent high severity low frequency risk or losses arising from multiple simultaneous events

+ Environment and internal control factors
*  Quantification must embed the internal risk profile of the bank

«  Capture key risk factors in a forward-looking approach

+  OR management
» Key Risk Indicators (KRI)
» Risk and Controls Self Assessment (RCSA)
+ Action and remediation plans

« Insurance contracts
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Requirements from regulation

« The Basel regulation allows banks to use one of the 3 approach es

« Basic approach: capital charge proportional to the bank’s gross income

+ Standard approach: capital charge proportional to the business lines’ gross income

« Advanced approach (AMA): Loss distribution Approach (LDA) or Scenario Based Approach (SBA)
* Inthe AMA approach, the capital charge is equal to the 99.9% | oss over 1 year

« Measurement of the capital charge must include the use of int ernal / external datas, scenario analysis and Environmenta  nd
internal control factors

« EBA has issued guidelines regarding AMA frameworks
» The AMA perimeter should include OR linked to credit risk
 Internal models will be constrained by the regulation
* BCBS publications
« Consultative paper about the revision to the simpler approaches (basic and standard)

« Review of the AMA framework expected in 2015
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NEW RESULTS ON THE CORRELATION PROBLEM
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Sound correlations vs. noise
Study based on ORX datas
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Cell risk modeling

« Aggregate losses computed from the OpRisk SAS Database are
compliant with lognormal tails

+ For a lognormal distribution, the parameters are linked to measurable
quantities

The implied parameters are in a stable range of values for all
confidence levels

* Cell loss correlations are proportional to the number of eve nts
correlation (Frachot et al., 2004).The correlation upper bounds
depend on cells frequencies

« Loss correlation upper-bounds from OpRisk SAS Database

+ Average = 1.33%
+ Standard deviation=1.61%

+ Maximum=11.27%

« The copula parameters are much lower than 10% on average

Confidence level Average StDev
95% 98% 41%
97,5% 99% 39%
99% 107% 44%
99,5% 112% 46%
99,9% 124% 48%
All 107% 42%

Expectsc value (1) _
Vali, (1) N

zorr(y,N,) =R =
arr (I, Ny) Jmaiis iz
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Analytical model: assumptions and definitions
ASSUMPTIONS
. Cell losses are lognormal
. One factor model
. Gaussian copula: pair-wise correlations may be dif ~ ferent to each other
. We assume that the parameters are not dependenton  the number of cells; the number of cells goes to in finity
DEFINITIONS
. Cellloss
«  Correlation mi — Bi. B

1 e
«  Bank'sloss LF) = |im7? L=E [g”'ztﬁr""i'r IF] = pfear+Eiz- CElef]
Momw N =

«  Bank'scapitalcharge N J‘(_F; ) K= NTHL1%)
. Stand-alone cell capital charge ~ K354; = e~

SOCIETE P.10

GENERALE




Homogeneous portfolio

. The bank’s loss is still lognormal
N

LFY=lim— ¥ L;= g-sﬁ;wiu-p)f:
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. Negative diversification appears when individual cell ri
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Cell risk dispersion
S - .
- Analytical model with individual cell risk dispersion L= geil/eF+[T=pel)
» Closed-form solution for the bank’s loss when the number of ¢ ells goes to infinity
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Correlation dispersion is not critical

¥
1 Y = Sy

+ Analytical model with correlation dispersion L(F) = \ﬂfﬁi Iy = E|ememm ===V ] = J dx flx)e=Fra-alioz
IR -

» As the correlation parameters are linked to the beta, their v ariances are linked as well

oy =0l —) W:Jm—ﬁ!

Normal law

e Uniiform law
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Mean-deviation of the correlation parameter
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NEW RESULTS ON THE CLASSIFICATION PROBLEM
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Classification invariance (1/2)

ASSUMPTIONS

. Homogeneous risk portfolio

«  The shapes of the distributions don’t change with the number N of cells
*  The parameters scale with the number of cells

*  The number of cells goes to infinity

+  Cellsrisks are independant to each other
LOGNORMAL CASE

N
Bank’s loss Ly = Z eHNtoNK:

2
lim E[Ly] = lim e#NtoN/2 =
Casymptotic classification invariance Now Now ) )
lim var[Ly] = lim e?#n*oN (e"N - 1) =b
Now Nooo

3
Scaling of the parameters Uy~ — 3 InN and oy~VInN

N
Lindeberg's criterion lim lzz f [V, — E(Y)]%dP =0
N=o sy &= iy —Ewl>esy

1
Domain of attraction of the normal distribution gy < 2 InN
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Classification invariance (2/2)
« Domain of attraction of the bank’s operational loss in the ge neral case: Ben Arous, Bogachev, Molchanov Theorem
» There is a competition between the attraction of the normal d istribution fixed point for the sum of i.i.d random variable s and
the divergence of the volatility parameter [
« Ifthe divergence is slow: domain of attraction of the normal distribution (Lindeberg’s condition satisfied)
« Ifthe divergence is fast: domain of attraction of the fully asymetric Levy distribution.
» Surprising results
« Fait tail (power law) distributions emerge from the classification invariance requirement
« Distributions with finite variance are not in the domain of attraction of the normal distribution
« Negative diversification occurs, even for uncorrelated cell risks
« For correlated cells risks, classification invariance generates decorrelaltion among cells. The correlation parameter scales as:
pv~K/InN
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Conclusions

« Average cell risk, cell risk dispersion and average correla tions are critical parameters
» Regarding correlations
« they are very noisy
« they seem low
« Correlation dispersion is not a critical parameter
« Diversification / negative diversification effects are no t driven by correlations but by the shape of cell risk distrib
» Power laws and fat tails appear naturally when we require the classificationinvariance
» Negative diversification may appear for large numbers of cells in the model
* Analytical models have some vertues
« Avoidthe black box feeling of the full statistical / Monte-Carlo approach

« They embed very few specifications and lead to general results

utions

«  The portfolio approach for operational risk is still unexpl ored, and we need to rethink the current approach to take into

account of the scarcity of data
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